Impact of Fatty Triamine on Friction Reduction Performance of MoDTC Lubrication Additive
Abstract
:1. Introduction
2. Methods
2.1. Additives and Lubricants
2.2. Tribological Experiments
2.3. Characterizations
3. Results and Discussion
3.1. Friction Reduction Performances of MoDTC-Based Lubricant Formulations
3.2. Stability of MoDTC-Based Lubricant Formulations
3.3. Chemical Nature of the Precipitate Formed from MoDTC and Triameen YT
3.3.1. IR Spectroscopy Analysis
3.3.2. XPS Spectroscopy Analysis
3.3.3. TEM/EDS Analysis
3.3.4. XAS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spikes, H. Friction modifier additives. Tribol. Lett. 2015, 60, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Cooper, H.S.; Damerell, V.R. Lubricants Suitable for Various Uses. U.S. Patent 2,156,803, 3 May 1934. [Google Scholar]
- DeBlase, F.J.; Madabusi, V.K.; Ferrarotti, S.; Gaenzler, F.; Migdal, C.A.; Mulqueen, G. Friction Modifier Composition for Lubricants. U.S. Patent 9,321,979,B2, 26 April 2016. [Google Scholar]
- Spengler, G.; Weber, A. Über die Schmierfähigkeit organischer Molybdänverbindungen. Chem. Ber. 1959, 92, 2163–2171. [Google Scholar] [CrossRef]
- Feng, I.M.; Perilstein, W.L.; Adams, M.R. Solid film deposition and non-sacrificial boundary lubrication. ASLE Trans. 1963, 6, 60–66. [Google Scholar] [CrossRef]
- Graham, J.; Korcek, S.; Spikes, H. The Friction Reducing Properties of Molybdenum Dialkyldithiocarbamate Additives: Part I—Factors Influencing Friction Reduction. Tribol. Trans. 2001, 44, 626–636. [Google Scholar] [CrossRef]
- Scott, D.; Harvey, S.S.K.; Blackwell, J. An exploratory investigation of lubricant-soluble molybdenum sulphur additives under conditions of rolling contact. Wear 1980, 63, 183–188. [Google Scholar] [CrossRef]
- De Barros Bouchet, M.I.; Martin, J.M.; Oumahi, C.; Gorbatchev, O.; Afanasiev, P.; Geantet, C.; Iovine, R.; Thiebaut, B.; Heau, C. MoS2 formation induced by amorphous MoS3 species under lubricated friction. Tribol. Int. 2018, 119, 600–607. [Google Scholar] [CrossRef]
- Topolovec-Miklozic, K.; Forbus, T.R.; Spikes, H.A. Performance of friction modifiers on ZDDP-generated surfaces. Tribol. Trans. 2007, 50, 328–335. [Google Scholar] [CrossRef]
- Eriksson, K. Fatty Amines as Friction Modifiers in Engine Oils: Correlating Adsorbed Amount to Friction and Wear Performance. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2014. [Google Scholar]
- Lundgren, S.; Eriksson, K.; Rossenaar, B. Boosting the Friction Performance of Amine Friction Modifiers with MoDTC. SAE Int. J. Fuels Lubr. 2015, 8, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Morina, A.; Neville, A.; Priest, M.; Green, J.H. ZDDP and MoDTC interactions and their effect on tribologi-cal performance—tribofilm characteristics and its evolution. Tribol. Lett. 2006, 24, 243–256. [Google Scholar] [CrossRef]
- Proux, O.; Biquard, X.; Lahera, E.; Menthonnex, J.J.; Prat, A.; Ulrich, O.; Soldo, Y.; Trévisson, P.; Kapoujyan, G.; Perroux, G.; et al. FAME: A new beamline for x-ray absorption investigations of very-diluted systems of environmental, material and biological interests. Phys. Scr. 2005, 115, 970–973. [Google Scholar] [CrossRef]
- Ankudinov, A.L.; Bouldin, C.E.; Rehr, J.J.; Sims, J.; Hung, H. Parallel calculation of electron multiple scattering using lanczos algorithms. Phys. Rev. B 2002, 65, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Klementev, K.V. Statistical evaluations in fitting problems. J. Synchrotron Rad. 2001, 8, 270–272. [Google Scholar] [CrossRef] [Green Version]
- De Feo, M.; Minfray, C.; De Barros-Bouchet, M.I.; Thiebaut, B.; Le Mogne, T.; Vacher, B.; Martin, J.M. Ageing impact on tribological properties of MoDTC-containing base oil. Tribol. Int. 2015, 92, 126–135. [Google Scholar] [CrossRef]
- Nehme, G. Tribological and thermal characteristics of reduced phosphorus plain ZDDP oil in the presence of PTFE/FeF3/TiF3 under optimized extreme loading condition and a break in period using two different rotational speeds. Wear 2013, 301, 747–752. [Google Scholar] [CrossRef]
- Gorbatchev, O.; De Barros Bouchet, M.I.; Martin, J.M.; Léonard, D.; Le Mogne, T.; Iovine, R.; Thiebaut, B.; Héau, C. Friction reduction efficiency of organic Mo-containing FM additives associated to ZDDP for steel and carbon-based contacts. Tribol. Int. 2016, 99, 278–288. [Google Scholar] [CrossRef]
- Stewart, J.E. Vibrational Spectra of Primary and Secondary Aliphatic Amines. J. Chem. Phys. 1959, 30, 1259–1265. [Google Scholar] [CrossRef]
- Fringeli, U.P.; Gunthard, H.H. Infrared Membrane Spectroscopy. Mol. Biol. Biochem. Biophys. 1981, 31, 270–332. [Google Scholar]
- Genuit, D.; Bezverkhyy, I.; Afanasiev, P. Solution preparation of the amorphous molybdenum oxysulfide MoOS2 and its use for catalysis. J. Solid State Chem. 2005, 178, 2759–2765. [Google Scholar] [CrossRef]
- Fripiat, J.J.; Pennequin, M.; Poncelet, G.; Cloos, P. Application of Far-infrared spectroscopy to the study of clay minerals and zeolites. Clay Miner. 1969, 8, 119–134. [Google Scholar] [CrossRef]
- Peeters, S.; Restuccia, P.; Loehlé, S.; Thiebaut, B.; Righi, M.C. Characterization of Molybdenum Dithiocar-bamates by First-Principles Calculations. J. Phys. Chem. A 2019, 123, 7007–7015. [Google Scholar] [CrossRef]
- Benoist, L.; Gonbeau, D.; Pfister-Guillouzo, G.; Schmidt, E.; Meunier, G.; Levasseur, A. X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin films. Thin. Solid Film. 1995, 258, 110–114. [Google Scholar] [CrossRef]
- Ye, X.R.; Hou, H.W.; Xin, X.Q.; Hammer, C.F. M-S (M=Mo, W) cluster compound films on copper surfaces. Appl. Surf. Sci. 1995, 89, 151–157. [Google Scholar] [CrossRef]
- Kartio, I.; Laajalehto, K.; Suoninen, E.; Karthe, S.; Szargan, R. Technique for XPS measurements of volatile adsorbed layers: Application to studies of sulphide flotation. Surf. Int. Anal. 1992, 18, 807–810. [Google Scholar] [CrossRef]
- Ji, W.; Shen, R.; Yang, R.; Yu, G.; Guo, X.; Peng, L.; Ding, W. Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 699–704. [Google Scholar] [CrossRef]
- Vasquez, R.P. CuSO4 by XPS. Surf. Sci. Spectra 1998, 5, 279–284. [Google Scholar] [CrossRef]
- Collaud Coen, M.; Keller, B.; Groening, P.; Schlapbach, L. Functionalization of graphite, glassy carbon, and polymer surfaces with highly oxidized sulfur species by plasma treatments. J. Appl. Phys. 2002, 92, 5077–5083. [Google Scholar] [CrossRef] [Green Version]
- Bezverkhyy, I.; Afanasiev, P.; Lacriox, M. Preparation and Chemical Transformation of Surfactant-Templated Hybrid Phase Containing MoS42-Anions. Mater. Res. Bull. 2002, 37, 161–168. [Google Scholar] [CrossRef]
- Zhang, Z.; Yamaguchi, E.S.; Yu, L.; Kasrai, M.; Bancroft, G.M. Effects of Mo-Containing Dispersants on the Function of ZDDP: Chemistry and Tribology. Tribol. Trans. 2007, 50, 58–67. [Google Scholar] [CrossRef]
- De Boer, M.; Van Dillen, A.J.; Koningsberger, D.C.; Geus, J.W. The Structure of Highly Dispersed SiO2-Supported Molybdenum Oxide Catalysts during Sulfidation. J. Phys. Chem. 1994, 98, 7862–7870. [Google Scholar] [CrossRef] [Green Version]
- Conradson, D.S.; Burgess, B.K.; Newton, W.E.; McDonald, J.W.; Rubinson, J.F.; Gheller, S.F.; Mortenson, L.E.; Adams, M.W.W.; Mascharak, P.K. Structural insights from the molybdenum K-edge x-ray absorption near edge structure of the iron-molybdenum protein of nitrogenase and its iron-molybdenum cofactor by comparison with synthetic iron-molybdenum-sulfur clusters. J. Am. Chem. Soc. 1985, 107, 7935–7940. [Google Scholar] [CrossRef]
- Rochet, A.; Baubet, B.; Moizan, V.; Pichon, C.; Briois, V. Co-K and Mo-K edges Quick-XAS study of the sulphidation properties of Mo/Al2O3 and CoMo/Al2O3 catalysts. C. R. Chim. 2016, 19, 1337–1351. [Google Scholar] [CrossRef]
- Hugel, M. Schmieroel Fuer Metalloberflaechen. DE1003895B, 7 March 1957. [Google Scholar]
- Perrin, B. Produits d’addition Aux Huiles Lubrifiantes. FR1370796A, 28 August 1964. [Google Scholar]
- Schlicht, R.C.; Levine, S.A.; Chafetz, H. Derivés Thiomolybdeniques d’alcenylsuccinimides Dispersants et Lubrifiant en Contenant. FR2484441A1, 18 December 1981. [Google Scholar]
- Singerman, G.M.; Ryu, Y.P.; Anglin, J.R. Lubricating Oils Containing Quaternary Ammonium Thiomolybdates. US4400282A, 23 August 1983. [Google Scholar]
- Casey, B.M.; Gatto, V.J. Imidazolium Sulfur-Containing Binuclear Molybdate Salts as Lubricant Additives. US20170240837A1, 14 February 2017. [Google Scholar]
- Dawczyk, J.; Russo, J.; Spikes, H. Ethoxylated Amine Friction Modifiers and ZDDP. Tribol. Lett. 2019, 67, 106. [Google Scholar] [CrossRef]
Formulation | FCo at 80 °C | FCo at 110 °C |
---|---|---|
PAO 4 | 0.14 | - |
MoDTC | 0.07 | 0.07 |
MoDTC+ZDDP | 0.06 | 0.06 |
MoDTC+Triameen YT | 0.05 | 0.05 |
MoDTC+Triameen YT pre-heated * | 0.07 | 0.05 |
MoDTC+Triameen YT +ZDDP | 0.10 | 0.09 |
MoDTC+Triameen YT pre-heated+ZDDP ** | 0.07 | 0.07 |
Shell | CN | R(Ǻ) | σ2(Ǻ2) | ΔE0 |
---|---|---|---|---|
(NH4)2MoO2S2 | ||||
O | 2 | 1.76(3) | 0.0035(5) | 0.1(5) |
S | 2 | 2.22(2) | 0.0050(6) | 0.1(5) |
MoDTC | ||||
O | 0.9(2) | 1.78(2) | 0.004(1) | 0.1(5) |
S | 3.9(5) | 2.41(2) | 0.008(2) | 0.1(5) |
Mo | 1.0(2) | 2.81(2) | 0.007(2) | 0.1(5) |
Reddish MoDTC+ triamine precipitate | ||||
O | 1.0(3) | 1.75(6) | 0.006(2) | −0.4(5) |
S | 3.2(6) | 2.32(6) | 0.009(4) | −0.4(5) |
Mo | 0.4(3) | 2.81(5) | 0.008(5) | −0.4(5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oumahi, C.; Mogne, T.L.; Aguilar-Tapia, A.; Charrin, C.; Geantet, C.; Afanasiev, P.; Thiebaut, B.; De Barros-Bouchet, M.I. Impact of Fatty Triamine on Friction Reduction Performance of MoDTC Lubrication Additive. Lubricants 2022, 10, 365. https://doi.org/10.3390/lubricants10120365
Oumahi C, Mogne TL, Aguilar-Tapia A, Charrin C, Geantet C, Afanasiev P, Thiebaut B, De Barros-Bouchet MI. Impact of Fatty Triamine on Friction Reduction Performance of MoDTC Lubrication Additive. Lubricants. 2022; 10(12):365. https://doi.org/10.3390/lubricants10120365
Chicago/Turabian StyleOumahi, Camella, Thierry Le Mogne, Antonio Aguilar-Tapia, Catherine Charrin, Christophe Geantet, Pavel Afanasiev, Benoit Thiebaut, and Maria Isabel De Barros-Bouchet. 2022. "Impact of Fatty Triamine on Friction Reduction Performance of MoDTC Lubrication Additive" Lubricants 10, no. 12: 365. https://doi.org/10.3390/lubricants10120365
APA StyleOumahi, C., Mogne, T. L., Aguilar-Tapia, A., Charrin, C., Geantet, C., Afanasiev, P., Thiebaut, B., & De Barros-Bouchet, M. I. (2022). Impact of Fatty Triamine on Friction Reduction Performance of MoDTC Lubrication Additive. Lubricants, 10(12), 365. https://doi.org/10.3390/lubricants10120365