Friction-Excited Oscillation of Air Conditioner Rotary Compressors: Measurements and Numerical Simulations
Abstract
:1. Introduction
2. Measurement of Oscillation and Noise of Rotary Compressors
2.1. Test and Measurement Details
2.2. Test Parameters and Procedure
2.3. Extraction Approach of Friction-Excited Oscillation of Compressors
3. Modeling of the Friction-Excited Oscillation of Compressors
3.1. Modeling of the Friction-Excited Oscillation Due to Mode Coupling
3.2. Complex Eigenvalue Analysis of Friction-Excited Oscillation
3.3. Transient Dynamic Analysis of Friction-Excited Oscillation
3.4. Material Property Parameters of the Compressor Model
3.5. Boundary Conditions
3.6. Friction Coefficients
4. Results and Discussion
4.1. Identification of the Rub Impact Fault and Friction-Excited Vibration of Rotary Compressors
4.2. Prediction of the Friction-Excited Oscillation of the Rotary Compressor
4.3. Effect of Friction Coefficient on Friction-Motivated Oscillation of the Rotary Compressor
4.4. Effect of Elastic Modulus on Friction-Motivated Oscillation of the Rotary Compressor
4.5. Transient Dynamic Analysis of Friction-Motivated Oscillation of the Rotary Compressor
4.6. Effect of Damping Ring on Friction-Motivated Vibration of the Rotary Compressor
5. Conclusions
- There are many vibration components in the measured vibration of the compressor shell, frequencies of which are one, double, triple, quadruple, and even tens of times the rotating frequency of the rotary compressor, suggesting that rub impact occurs between the rotating components and static components of the rotary compressor.
- The friction-motivated vibration of the rotary compressor can be identified using the harmonic wavelet transform and the envelope spectrum analysis.
- The complex eigenvalue analysis of the mode-coupling model of the rotary compressor can be used to forecast the friction-motivated oscillation of the compressor.
- The coefficient of friction has an important effect on the friction-motivated oscillation of the compressor. When the coefficient of friction is less than 0.07, no friction-motivated oscillation of the compressor occurs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hay, B.; Kemp, M.F. Frequency analysis of air conditioning noise in landscaped offices. J. Sound Vib. 1972, 23, 375–381. [Google Scholar] [CrossRef]
- Jie, T.; Ouyang, H.; Wu, Y. Experimental and numerical study on aerodynamic noise of outdoor unit of room air conditioner with different grilles. Int. J. Refrig. 2009, 32, 1112. [Google Scholar]
- Han, H.S.; Jeong, W.B.; Aoyama, S.; Mo, J.Y. Experimental analysis for reducing refrigerant-induced noise of 4-way cassette type air conditioner. J. Mech. Sci. Technol. 2009, 23, 1456–1467. [Google Scholar] [CrossRef]
- Soeta, Y.; Shimokura, R. Sound quality evaluation of air-conditioner noise based on factors of the autocorrelation function. Appl. Acoust. 2017, 124, 11–19. [Google Scholar] [CrossRef]
- Sugio, T.; Sano, K.; Izumi, Y.; Sakai, H. Noise sources of room air conditioners and their reduction techniques. Turbomachinery 1998, 26, 80–86. [Google Scholar]
- Jang, S.; Choung, H.; Park, S.; Lee, S. Investigation on noise of rotary compressors using fluid-structure interaction. J. Mech. Sci. Technol. 2019, 33, 5129–5135. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, U.Y. Design optimization of an accumulator for reducing rotary compressor noise. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2012, 226, 285–296. [Google Scholar] [CrossRef]
- Kim, H.C.; Cho, M.G.; Kim, J.; Park, J.H.; Shim, J. Coherence technique for noise reduction in rotary compressor. J. Mech. Sci. Technol. 2012, 26, 2073–2076. [Google Scholar] [CrossRef]
- Lijun, Z.; Yongchao, D.; Dejian, M.; Wenbo, L. A hybrid model for predicting steering brake squeal based on multibody dynamics and finite element methods. Shock. Vib. 2022, 2022, 1906498. [Google Scholar]
- Dejian, M.; Jun, W.; Lijun, Z. Transient Analysis of a Flexible Pin-on-Disk System and Its Application to the Research into Time-Varying Squeal. J. Vib. Acoust. 2017, 140, 011006. [Google Scholar]
- Lazzari, A.; Tonazzi, D.; Massi, F. Squeal propensity characterization of brake lining materials through friction noise measurements. Mech. Syst. Signal Process. 2019, 128, 216–228. [Google Scholar] [CrossRef]
- Brunetti, J.; Massi, F.; D’Ambrogio, W.; Berthier, Y. A new instability index for unstable mode selection in squeal prediction by complex eigenvalue analysis. J. Sound Vib. 2016, 377, 106–122. [Google Scholar] [CrossRef]
- Baillet, L.; D’Errico, S.; Laulagnet, B. Understanding the occurrence of squealing noise using the temporal finite element method. J. Sound Vib. 2005, 292, 443–460. [Google Scholar] [CrossRef]
- Tang, B.; Mo, J.L.; Zhang, X.; Zhang, Q.; Zhu, M.H.; Zhou, Z.R. Experimental investigation of the squeal characteristics in railway disc brakes. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 232, 1437–1449. [Google Scholar] [CrossRef]
- Kinkaid, N.M.; O’Reilly, O.M.; Papadopoulos, P. Automotive disc brake squeal. J. Sound Vib. 2003, 267, 105–166. [Google Scholar] [CrossRef]
- Ibrahim, R.A. Friction-induced vibration, chatter, squeal, and chaos. Part 2. Dynamics and modeling. Appl. Mech. Rev. 1994, 47, 227–253. [Google Scholar] [CrossRef]
- Nack, W.V. Brake squeal analysis by finite elements. Int. J. Veh. Des. 2000, 23, 263–275. [Google Scholar] [CrossRef]
- Ouyang, H.; Nack, W.; Yuan, Y.; Chen, F. Numerical analysis of automotive disc brake squeal: A review. Int. J. Veh. Noise Vib. 2005, 1, 207–231. [Google Scholar] [CrossRef]
- Lu, H.; Shangguan, W.; Yu, D. Squeal reduction of a disc brake system with fuzzy uncertainties. J. Vibroeng. 2016, 18, 3981–4001. [Google Scholar] [CrossRef]
- Lu, H.; Shangguan, W.-B.; Yu, D. A unified approach for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. Mech. Syst. Signal Process. 2017, 93, 281–298. [Google Scholar] [CrossRef]
- Amir, N.; Huajiang, O.; Paul, B. Uncertainty quantification of squeal instability via surrogate modelling. Mech. Syst. Signal Process. 2015, 60–61, 887–908. [Google Scholar]
- Li, Y.; Wang, S.; Yang, Y.; Deng, Z. Multiscale symbolic fuzzy entropy: An entropy denoising method for weak feature extraction of rotating machinery. Mech. Syst. Signal Process. 2022, 162, 108052. [Google Scholar] [CrossRef]
- Ahmad, S. Rotor casing contact phenomenon in rotor dynamics-literature survey. J. Vib. Control 2010, 16, 1369–1377. [Google Scholar] [CrossRef]
- Goldman, P.; Muszynska, A. Rotor-to-stator, rub-related, thermal/mechanical effects in rotating machinery. Chaos Solitons Fractals 1995, 5, 1579–1601. [Google Scholar] [CrossRef] [Green Version]
- Xing, P.; Li, G.; Gao, H.; Wang, G. Experimental investigation on identifying friction state in lubricated tribosystem based on friction-induced vibration signals. Mech. Syst. Signal Process. 2020, 138, 106590. [Google Scholar] [CrossRef]
- Newland, D.E. Wavelet analysis of vibration, Part 1: Theory. J. Vib. Acoust. 1994, 116, 409–416. [Google Scholar] [CrossRef]
- Newland, D.E. Harmonic wavelet analysis. Proc. R. Soc. Lond. 1993, 443, 203–205. [Google Scholar]
- Zhang, H.F.; Wu, J.H.; Xie, F.; Chen, A.; Li, Y.Z. Dynamic behaviors of the crankshafts in single-cylinder and twin-cylinder rotary compressors. Int. J. Refrig.-Rev. Int. Froid 2014, 47, 36–45. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yu, X.L.; Liu, F.L.; Feng, Q.K.; Tan, Q. Dynamic analyses for the rotor-journal bearing system of a variable speed rotary compressor. Int. J. Refrig.-Rev. Int. Froid 2013, 36, 1938–1950. [Google Scholar] [CrossRef]
- Xiao, B.; Zheng, X.; Zhou, Y.; Yao, D.; Wan, Y. Tribological behaviors of the water-lubricated rubber bearings under different lubricated conditions. Ind. Lubr. Tribol. 2020, 73, 260–265. [Google Scholar] [CrossRef]
- Kuang, F.; Zhou, X.; Liu, Z.; Huang, J.; Liu, X.; Qian, K. Konstantinos Gryllias, Computer-vision-based research on friction vibration and coupling of frictional and torsional vibrations in water-lubricated bearing-shaft system. Tribol. Int. 2020, 150, 106336. [Google Scholar] [CrossRef]
Part | Material | Density (kg/m3) | Modulus of Elasticity (MPa) | Poisson’s Ratio |
---|---|---|---|---|
Main bearing | HT250 | 7300 | 130,000 | 0.3 |
Crankshaft | Ductile iron | 7190 | 163,000 | 0.3 |
Roller | FC300 | 7200 | 130,000 | 0.3 |
Cylinder | Grey cast iron | 7070 | 130,000 | 0.26 |
Sub-bearing | HT250 | 7300 | 130,000 | 0.3 |
Vane | Stainless steel | 7600 | 190,000 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Zhang, R.; Zhang, J.; Song, Q.; Chen, G. Friction-Excited Oscillation of Air Conditioner Rotary Compressors: Measurements and Numerical Simulations. Lubricants 2022, 10, 50. https://doi.org/10.3390/lubricants10040050
Hu Y, Zhang R, Zhang J, Song Q, Chen G. Friction-Excited Oscillation of Air Conditioner Rotary Compressors: Measurements and Numerical Simulations. Lubricants. 2022; 10(4):50. https://doi.org/10.3390/lubricants10040050
Chicago/Turabian StyleHu, Yusheng, Rongting Zhang, Jinquan Zhang, Qifeng Song, and Guangxiong Chen. 2022. "Friction-Excited Oscillation of Air Conditioner Rotary Compressors: Measurements and Numerical Simulations" Lubricants 10, no. 4: 50. https://doi.org/10.3390/lubricants10040050
APA StyleHu, Y., Zhang, R., Zhang, J., Song, Q., & Chen, G. (2022). Friction-Excited Oscillation of Air Conditioner Rotary Compressors: Measurements and Numerical Simulations. Lubricants, 10(4), 50. https://doi.org/10.3390/lubricants10040050