Influence of Fluid Film Bearings with Different Axial Groove Shapes on Automotive Turbochargers: An Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Turbochargers
2.2. Modified Journal Bearings
2.3. Tests Performed
3. Results and Discussion
3.1. Vibration Frequency Spectra
3.2. Rotor Whirling Orbits
3.3. Overall TC Performance and Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernhauser, L.; Heinisch, M.; Schörgenhumer, M.; Nader, M. The effect of non-circular bearing shapes in hydrodynamic journal bearings on the vibration behavior of turbocharger structures. Lubricants 2017, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Brito, F.P.; Miranda, A.S.; Fillon, M. Analysis of the effect of grooves in single and twin axial groove journal bearings under varying load direction. Tribol. Int. 2016, 103, 609–619. [Google Scholar] [CrossRef] [Green Version]
- Andrés, L.S.; Rivadeneira, J.C.; Chinta, M.; Gjika, K.; LaRue, G. Nonlinear rotordynamics of automotive turbochargers: Predictions and comparisons to test data. J. Eng. Gas Turbines Power 2007, 129, 488–493. [Google Scholar] [CrossRef]
- Sharma, S.C.; Tomar, A.K. Study on MR fluid hybrid hole-entry spherical journal bearing with micro-grooves. Int. J. Mech. Sci. 2021, 202, 106504. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, S.C. Effect of geometric shape of micro-grooves on the performance of textured hybrid thrust pad bearing. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 508. [Google Scholar] [CrossRef]
- Xiang, G.; Han, Y.; Chen, R.; Wang, J.; Ni, X.; Xiao, K. A hydrodynamic lubrication model and comparative analysis for coupled microgroove journal-thrust bearings lubricated with water. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020, 234, 1755–1770. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, S.C.; Narwat, K. Influence of micro-groove attributes on frictional power loss and load-carrying capacity of hybrid thrust bearing. Ind. Lubr. Tribol. 2019, 72, 589–598. [Google Scholar] [CrossRef]
- Dai, H.; Xiang, G.; Wang, J.; Guo, J.; Wang, C.; Jia, H. Study on time-varying mixed lubrication performance of microgroove journal-thrust coupled bearing under water lubrication. Ind. Lubr. Tribol. 2022, 74, 265–273. [Google Scholar] [CrossRef]
- Jin, D.; Xiao, K.; Xiang, G.; Wang, Y.; Wang, C.; Jia, H. A simulation model to comparative analysis the effect of texture bottom shape on wear and lubrication performances for micro-groove water lubricated bearings. Surf. Topogr. Metrol. Prop. 2021, 9, 025009. [Google Scholar] [CrossRef]
- Xiang, G.; Han, Y.; Wang, J.; Xiao, K.; Li, J. A transient hydrodynamic lubrication comparative analysis for misaligned micro-grooved bearing considering axial reciprocating movement of shaft. Tribol. Int. 2019, 132, 11–23. [Google Scholar] [CrossRef]
- Sahu, K.; Sharma, S.C. A simulation study on the behavior of magnetorheological fluid on Herringbone-grooved hybrid slot-entry bearing. Tribol. Trans. 2019, 62, 1099–1118. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W. Structural Design and Optimization of Herringbone Grooved Journal Bearings Considering Turbulent. Appl. Sci. 2022, 12, 485. [Google Scholar] [CrossRef]
- Dong, Z.; Cheng, C.; Xu, F. Theoretical Study on Static Performance of Herringbone Grooved Aerodynamics Foil Bearing. In Turbo Expo: Power Land Sea Air; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 84218, p. V10AT25A030. [Google Scholar]
- Wang, C.; Wang, M.; Zhu, L. Analysis of Grooves Used for Bearing Lubrication Efficiency Enhancement under Multiple Parameter Coupling. Lubricants 2022, 10, 39. [Google Scholar] [CrossRef]
- Roy, L.; Laha, S.K. Steady state and dynamic characteristics of axial grooved journal bearings. Tribol. Int. 2009, 42, 754–761. [Google Scholar] [CrossRef]
- Kirk, R.G. Experimental evaluation of hydrodynamic bearings for a high speed turbocharger. J. Eng. Gas Turbines Power 2014, 136, 072501. [Google Scholar] [CrossRef]
- Chatterton, S.; Dang, P.V.; Pennacchi, P.; De Luca, A.; Flumian, F. Experimental evidence of a two-axial groove hydrodynamic journal bearing under severe operation conditions. Tribol. Int. 2017, 109, 416–427. [Google Scholar] [CrossRef]
- McCarthy, D.M.C.; Glavatskih, S.B.; Byheden, Å. Influence of oil type on the performance characteristics of a two-axial groove journal bearing. Lubr. Sci. 2009, 21, 366–377. [Google Scholar] [CrossRef]
- Roy, B.; Roy, L.; Dey, S. Effect of Eccentricity and Surface Roughness on Probabilistic Performance of Two Axial Groove Bearing. J. Eng. Gas Turbines Power 2021, 143, 101013. [Google Scholar] [CrossRef]
- Yathish, K.; Binu, K.G.; Shenoy, B.S.; Rao, D.S.; Pai, R. Study of TiO2 nanoparticles as lubricant additive in two-axial groove journal bearing. Int. J. Mech. Aerosp. Ind. Mechatron. Eng. 2014, 8, 1723–1729. [Google Scholar]
- Gong, J.; Jin, Y.; Liu, Z.; Jiang, H.; Xiao, M. Study on influencing factors of lubrication performance of water-lubricated micro-groove bearing. Tribol. Int. 2019, 129, 390–397. [Google Scholar] [CrossRef]
- Das, B.J.; Roy, L. Analysis and comparison of steady-state performance characteristics of two-axial groove and multilobe hydrodynamic bearings lubricated with non-Newtonian fluids. Proceedings of the Institution of Mechanical Engineers. J. Eng. Tribol. 2018, 232, 1581–1596. [Google Scholar]
- Mallya, R.; Shenoy, S.B.; Pai, R. Static characteristics of misaligned multiple axial groove water-lubricated bearing in the turbulent regime. Proceedings of the Institution of Mechanical Engineers. J. Eng. Tribol. 2017, 231, 385–398. [Google Scholar]
- Abass, B.A.; Muneer, M.A.A. Static and Dynamic Performance of Journal Bearings lubricated With Nano-Lubricant. Association of Arab Universities. J. Eng. Sci. 2018, 25, 201–212. [Google Scholar]
- Shooroki, A.R.; Rahmatabadi, A.D.; Mehrjardi, M.Z. Effect of using hybrid nano lubricant on the thermo-hydrodynamic performance of two lobe journal bearings. Proceedings of the Institution of Mechanical Engineers. J. Eng. Tribol. 2021, 236, 13506501211053089. [Google Scholar]
- Zulhanafi, P.; Syahrullail, S.; Ahmad, M.A. The Tribological Performance of Hydrodynamic Journal Bearing Using Bio-based Lubricant. Tribol. Ind. 2020, 42, 278. [Google Scholar] [CrossRef]
- Feng, H.; Jiang, S.; Ji, A. Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects. Tribol. Int. 2019, 130, 245–260. [Google Scholar] [CrossRef]
- Roy, L.; Majumdar, B.C. Effect of the location of axial groove on the steady state and dynamic characteristics of oil journal bearings. In Proceedings of the National conference on Machines and Mechanisms, Guwahati, India, 16–17 December 2005; pp. 261–268. [Google Scholar]
- Dwivedi, V.K.; Pathak, P. Effect of axial groove location, length, and width ratio on bearing properties and stability. J. Comput. Appl. Res. Mech. Eng. 2021, 10, 525–537. [Google Scholar]
- Pai, R.S.; Pai, R. Stability of four-axial and six-axial grooved water-lubricated journal bearings under dynamic load. Proceedings of the Institution of Mechanical Engineers. J. Eng. Tribol. 2008, 222, 683–691. [Google Scholar]
- Brito, F.P.; Miranda, A.S.; Claro, J.C.P.; Fillon, M. Experimental comparison of the performance of a journal bearing with a single and a twin axial groove configuration. Tribol. Int. 2012, 54, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Guo, B. Optimal surface texture design of journal bearing with axial grooves. Int. J. Heat Technol. 2017, 35, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Rao, T.V.V.L.N.; A Rani, A.M.; Mohamed, N.M.; Ya, H.H.; Awang, M.; M Hashim, F. Static and stability analysis of partial slip texture multi-lobe journal bearings. Proceedings of the Institution of Mechanical Engineers. J. Eng. Tribol. 2020, 234, 567–587. [Google Scholar]
- Li, B.; Sun, J.; Zhu, S.; Fu, Y.; Zhao, X.; Wang, H.; Teng, Q.; Ren, Y.; Li, Y.; Zhu, G. Thermohydrodynamic lubrication analysis of misaligned journal bearing considering the axial movement of journal. Tribol. Int. 2019, 135, 397–407. [Google Scholar] [CrossRef]
- Cao, J.; Dousti, S.; Allaire, P.; Dimond, T. Nonlinear transient modeling and design of turbocharger rotor/semi-floating bush bearing system. Lubricants 2017, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Kadam, K.R.; Banwait, S.S. Performance characteristics of two-axial groove journal bearing for different groove angles. Ind. Lubr. Tribol. 2018, 70, 432–443. [Google Scholar] [CrossRef]
- Kosasih, P.B.; Tieu, A.K. An investigation into the thermal mixing in journal bearings. Proceedings of the Institution of Mechanical Engineers. J. Eng. Tribol. 2004, 218, 379–389. [Google Scholar]
- Jeddi, L.; Khlifi, M.E.; Bonneau, D. Thermohydrodynamic analysis for a hydrodynamic journal bearing groove. Proceedings of the Institution of Mechanical Engineers. J. Eng. Tribol. 2005, 219, 263–274. [Google Scholar]
- Groper, M.; Etsion, I. Reverse flow as a possible mechanism for cavitation pressure build-up in a submerged journal bearing. J. Trib. 2002, 124, 320–326. [Google Scholar] [CrossRef]
- Pinkus, O. Thermal Aspects of Fluid Film Tribology; ASME Press: New York, NY, USA, 1990. [Google Scholar]
- SAE J1723; Supercharger Testing Standard. SAE: Warrendale, PA, USA, 1995.
- SAE J1826; Turbocharger Gas Stand Test Code. SAE: Warrendale, PA, USA, 1995.
- SAE J922; Turbocharger Nomenclature And Terminology. SAE: Warrendale, PA, USA, 1995; pp. 1–8.
- Venson, G.G. Desenvolvimento de um Banco de Ensaios e da Metodologia Experimental Para o Levantamento das Características Operacionais de Turbocompressores Utilizando Gás Quente. Master Dissertation, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2007. Repositório Institucional UFMG. Available online: https://repositorio.ufmg.br/handle/1843/SBPS-7B5LX6 (accessed on 18 December 2021).
- Sandoval, O.R. Metodologias de Caracterização de Falhas no Compressor Centrífugo de Turbocompressores Automotivos. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2019. Repositório Institucional UFMG. Available online: https://repositorio.ufmg.br/handle/1843/30170 (accessed on 18 December 2021).
- Smolík, L.; Polach, P.; Hajžman, M. Effects of Imperfect Grooves in Full-Floating Ring Bearings on Dynamics of a Turbocharger Rotor; Poznan University of Technology: Poznań, Poland, 2020. [Google Scholar]
- Khonsari, M.; Booser, E.R. Parasitic Power Losses in Hydrodynamic Bearings. Mach. Lubr. 2006, 33, 157–162. Available online: https://www.machinerylubrication.com/Read/862/parasitic-power-bearings (accessed on 28 January 2022).
- Sawicki, J.T.; Rao, T.V.V.L.N. A Nonlinear Model for Prediction of Dynamic Coefficients in a Hydrodynamic Journal Bearing. Int. J. Rotating Mach. 2004, 10, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Shoup, T.P.; Lawrence, J. Five-Axial Groove Cylindrical Journal Bearing with Pressure Dams for Bi-Directional Rotation. U.S. Patent US20150323000A1, 9 August 2016. Available online: https://patentimages.storage.googleapis.com/64/21/ad/58ecf41ad2e009/US20150323000A1.pdf (accessed on 22 March 2022).
- Romero, C.C. Contribución a la Caracterización Experimental y al Modelado de Turbinas de Geometría Variable en Grupos de Sobrealimentación. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, January 2005. [Google Scholar]
- Zheng, X.; Sun, Z.; Kawakubo, T.; Tamaki, H. Experimental investigation of surge and stall in a turbocharger centrifugal compressor with a vaned diffuser. Exp. Therm. Fluid Sci. 2017, 82, 493–506. [Google Scholar] [CrossRef]
- Vance, J.M. Rotordynamics of Turbomachinery; John Wiley Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Broatch, A.; Galindo, J.; Navarro, R.; García-Tíscar, J.; Daglish, A.; Sharma, R.K. Simulations and measurements of automotive turbocharger compressor whoosh noise. Eng. Appl. Comput. Fluid Mech. 2015, 9, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Alford, J.S. Protecting turbomachinery from self-excited rotor whirl. J. Eng. Power 1965, 87, 333–343. [Google Scholar] [CrossRef]
- Nguyen-Schäfer, H. Rotordynamics of Automotive Turbochargers; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Gunter, E.J.; Chen, W.J. Dynamic Analysis of a Turbocharger in Floating Bushing Bearings; ISCORMA-3: Cleveland, OH, USA, 2005; pp. 19–23. [Google Scholar]
- Alsaeed, A.; Kirk, G.; Bashmal, S. Effects of radial aerodynamic forces on rotor-bearing dynamics of high-speed turbochargers. Proc. Inst. Mech. Eng. J. Mech. Eng. Sci. 2014, 228, 2503–2519. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, X.; Zhu, W. Theoretical and experimental exploration into the fluid structure coupling dynamic behaviors towards water-lubricated bearing with axial asymmetric grooves. Mech. Syst. Signal Processing 2022, 168, 108624. [Google Scholar] [CrossRef]
Data | Turbocharger |
---|---|
Manufacturer | MGFC Ltd. (Biagio Turbos®) |
Model | AUT1000 |
Type of ICE 1 used | 1000 cc four-stroke ICE 1 |
Part number | 5827109101 |
Compressor Area/Radius | 0.48 |
Compressor Impeller Diameter | 49 [mm] |
Compressor Inducer Diameter | 32.5 [mm] |
Compressor Blades | 6 full + 6 splitter |
Compressor Housing Blades | N/A |
Turbine Area/Radius | 0.35 |
Turbine Impeller Diameter | 45.5 [mm] |
Turbine Inducer Diameter | 35.5 [mm] |
Turbine Blades | 10 full |
Turbine Housing Blades | N/A |
Shaft diameter at bearing assembly | 8 ± 0.002 [mm] |
Weight | 9 [kg] |
Data | Pressure Transducers | |||
---|---|---|---|---|
Measuring point | Turbine inlet/outlet | Oil inlet | Compressor inlet | Compressor outlet |
Measuring range | 0 to 1000 kPa | 0 to 600 kPa | −50 to 50 kPa | 0 to 1000 kPa |
Type of measurement | Gauge | Gauge | Gauge | Gauge |
Precision | ≤0.5% | ≤2% | ≤0.25% | ≤0.5% |
Data | Thermocouples | |||
Measuring point | Compressor inlet; Compressor output; Environment; Oil inlet; Oil reservoir. | Oil outlet; Gas inlet. | ||
Measuring range | 0–1200 °C | 0–1080 °C | ||
Type/Element | Cromel–Alumel (K)/Simple, 1 thermocouple measurement | |||
Precision | 0.75% of the final scale | 0.75% of the final scale | ||
Data | Flowrate Transducer | |||
Measuring point | Compressor outlet | |||
Measuring range | 51 to 1869 m3/h | |||
Type | Turbine flow with amplifier | |||
Precision | 0.2% | |||
Data | Rotating speed sensor | Rotating speed signal converter | ||
Application | Rotating speed of turbocharger rotor | Modulation for the computer | ||
Measuring range | 6000 to 200,000 rpm | - | ||
Exit signal | - | 0…10 V 2.5 V ± 10% pulses |
Data | Accelerometer |
---|---|
Sensitivity | 1000 [mV/g] |
Measuring range | ±5 [g pk] |
Sampling rate used | 20 [kHz] |
Mass | 0.007 [kg] (0.8% of TC mass) |
Data | Proximity Probe |
---|---|
Sensitivity | 7.87 [V/mm] |
Linear range | 0.25 to 2.25 [mm] |
Sampling rate used | 24 [kHz] |
Probe diameter | 5 [mm] |
Turbocharger (Groove Shape) | First Critical Speed | Second Critical Speed |
---|---|---|
TC (triangular) | 94.5 krpm | 138.5 krpm |
TC (half ellipse) | 97 krpm | 138.5 krpm |
Speed Lines | First Critical Speed | Second Critical Speed |
---|---|---|
SL 1 (67 krpm) | Far | Very far |
SL 2 (89 krpm) | Very close/Close | Very far |
SL 3 (105 krpm) | Close/Very close | Far |
SL 4 (121 krpm) | Far | Close |
SL 5 (135 krpm) | Very far | Very close |
Speed | Compressor Valve Closing Percentage | ||||
---|---|---|---|---|---|
Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | |
67 krpm | 0% (fully open) | 36% | 63% | 81% | 90% |
89 krpm | 0% (fully open) | 31% | 55% | 70% | 78% |
105 krpm | 0% (fully open) | 31% | 54% | 69% | 77% |
121 krpm | 0% (fully open) | 30% | 53% | 68% | 75% |
135 krpm | 0% (fully open) | 28% | 49% | 63% | 75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, L.H.J.; Sandoval, O.R.; Pereira, J.V.M.C.; de Souza, J.P.B.; Caetano, B.C.; Hanriot, V.M.; Pujatti, F.J.P.; de Faria, M.T.C. Influence of Fluid Film Bearings with Different Axial Groove Shapes on Automotive Turbochargers: An Experimental Study. Lubricants 2022, 10, 92. https://doi.org/10.3390/lubricants10050092
Machado LHJ, Sandoval OR, Pereira JVMC, de Souza JPB, Caetano BC, Hanriot VM, Pujatti FJP, de Faria MTC. Influence of Fluid Film Bearings with Different Axial Groove Shapes on Automotive Turbochargers: An Experimental Study. Lubricants. 2022; 10(5):92. https://doi.org/10.3390/lubricants10050092
Chicago/Turabian StyleMachado, Luiz Henrique Jorge, Oscar Ricardo Sandoval, José Victor Matos Carvalho Pereira, Juliana Primo Basílio de Souza, Bryan Castro Caetano, Vítor Mourão Hanriot, Fabrício José Pacheco Pujatti, and Marco Tulio Correa de Faria. 2022. "Influence of Fluid Film Bearings with Different Axial Groove Shapes on Automotive Turbochargers: An Experimental Study" Lubricants 10, no. 5: 92. https://doi.org/10.3390/lubricants10050092
APA StyleMachado, L. H. J., Sandoval, O. R., Pereira, J. V. M. C., de Souza, J. P. B., Caetano, B. C., Hanriot, V. M., Pujatti, F. J. P., & de Faria, M. T. C. (2022). Influence of Fluid Film Bearings with Different Axial Groove Shapes on Automotive Turbochargers: An Experimental Study. Lubricants, 10(5), 92. https://doi.org/10.3390/lubricants10050092