Structure–Phase Transformations in the Modified Surface of Al-20%Si Alloy Subjected to Two-Stage Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blutmager, A.; Varga, M.; Cihak-Bayr, U.; Friesenbichler, W.; Mayrhofer, P.H. Wear in hard metal check valves: In-situ surface modification through tribolayer formation in dry contact. Vacuum 2021, 192, 110482. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, Z.; Yi, Y.; He, L.; Yuan, S. Effect of machining on performance enhancement of superficial layer of high-strength alloy steel. J. Mater. Res. Technol. 2021, 14, 1065–1079. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Yan, Z.; Dong, P. Enhanced fatigue performance of aluminum alloy through surface strengthening treatment. Mater. Lett. 2022, 306, 130864. [Google Scholar] [CrossRef]
- Zhou, J.; Han, X.; Li, H.; Liu, S.; Yi, J. Investigation of layer-by-layer laser remelting to improve surface quality, microstructure, and mechanical properties of laser powder bed fused AlSi10Mg alloy. Mater. Des. 2021, 210, 110092. [Google Scholar] [CrossRef]
- Kagramanian, A.; Stankevich, P.; Aulin, D.; Basov, A. Efficiency improvement of locomotive-type diesel engine operation due to introduction of resource-saving technologies for cleaning diesel and diesel locomotive systems. Procedia Comput. Sci. 2019, 149, 264–273. [Google Scholar] [CrossRef]
- Denkena, B.; Dittrich, M.-A.; Liu, Y.; Theuer, M. Automatic Regeneration of Cemented Carbide Tools for a Resource Efficient Tool Production. Procedia Manuf. 2018, 21, 259–265. [Google Scholar] [CrossRef]
- Fanghänel, C.; Rautenstrauch, A.; Symmank, C.; Katzenberger, J.; Putz, M.; Kräusel, V.; Götze, U.; Awiszus, B. Multidimensional Analysis of Process Chains Regarding the Resource-efficient Manufacturing of Hybrid Structures. Procedia CIRP 2015, 26, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Polmear, I.; StJohn, D.; Nie, J.F.; Qian, M. Light Alloys: Metallurgy of the Light Metals, 5th ed.; Butterworth-Heinemann: Boston, MA, USA, 2017; p. 544. [Google Scholar]
- Li, R.; Liu, L.; Zhang, L.; Sun, J.; Shi, Y.; Yu, B. Effect of Squeeze Casting on Microstructure and Mechanical Properties of Hypereutectic Al-xSi Alloys. J. Mater. Sci. Technol. 2017, 33, 404–410. [Google Scholar] [CrossRef]
- Jung, J.-G.; Ahn, T.-Y.; Cho, Y.-H.; Kim, S.-H.; Lee, J.-M. Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al–Si alloy. Acta Mater. 2018, 144, 31–40. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, L.; Wang, J.; Yao, Q.; Rao, G.; Zhou, H. Understanding of strengthening and toughening mechanisms for Sc-modified Al-Si-(Mg) series casting alloys designed by computational thermodynamics. J. Alloy. Compd. 2019, 805, 415–425. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, C.; Wang, R.; Peng, C.; Qiu, K.; Wang, N. Effect of solidification rate on the coarsening behavior of precipitate in rapidly solidified Al-Si alloy. Prog. Nat. Sci. Mater. Int. 2016, 26, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Birol, Y. Microstructural evolution during annealing of a rapidly solidified Al–12Si alloy. J. Alloy. Compd. 2007, 439, 81–86. [Google Scholar] [CrossRef]
- Farag, O.F. Comparison of the Effect of Plasma Treatment and Gamma Ray Irradiation on PS-Cu Nanocomposite Films Surface. Results Phys. 2018, 9, 91–99. [Google Scholar] [CrossRef]
- Wei, D.; Wang, X.; Wang, R.; Cui, H. Surface modification of 5CrMnMo steel with continuous scanning electron beam process. Vacuum 2018, 149, 118–123. [Google Scholar] [CrossRef]
- Zaguliaev, D.V.; Ivanov, Y.F.; Klopotov, A.A.; Ustinov, A.M.; Shlyarov, V.V.; Yakupov, D.F. Evolution of strength properties and defect sub-structure of the hypoeutectic A319.0 alloy irradiated by a pulsed electron beam and fractured under tensile stress. Materialia 2021, 20, 101223. [Google Scholar] [CrossRef]
- Zaguliaev, D.; Ivanov, Y.; Konovalov, S.; Shlyarov, V.; Yakupov, D.; Leonov, A. Effect of pulsed electron beam treatment on microstructure and functional properties of Al-5.4Si-1.3Cu alloy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2021, 488, 23–29. [Google Scholar] [CrossRef]
- Kang, N.; Mansori, M.E.L. A new insight on induced-tribological behaviour of hypereutectic Al-Si alloys manufactured by selective laser melting. Tribol. Int. 2020, 149, 105751. [Google Scholar] [CrossRef]
- Zaguliaev, D.; Gromov, V.; Rubannikova, Y.; Konovalov, S.; Ivanov, Y.; Romanov, D.; Semin, A. Structure and phase states modification of AL-11SI-2CU alloy processed by ion-plasma jet and pulsed electron beam. Surf. Coat. Technol. 2020, 383, 125246. [Google Scholar] [CrossRef]
- Ivanov, Y.; Gromov, V.; Zaguliaev, D.; Glezer, A.; Sundeev, R.; Rubannikova, Y.; Semin, A. Modification of surface layer of hypoeutectic silumin by electroexplosion alloying followed by electron beam processing. Mater. Lett. 2019, 253, 55–58. [Google Scholar] [CrossRef]
- Romanov, D.A.; Budovskikh, E.A.; Zhmakin, Y.D.; Gromov, V.E. Surface modification by the EVU 60/10 electroexplosive system. Steel Transl. 2011, 41, 464–468. [Google Scholar] [CrossRef]
- Koval, N.N.; Ivanov, Y.F. Electron-Ion Plasma Modification of the Surface of Nonferrous Metals and Alloys; Publishing House of Scientific and Technology Literature: Tomsk, Russia, 2016; p. 304. [Google Scholar]
- Gromov, V.E.; Zagulyaev, D.V.; Ivanov, Y.F.; Konovalov, S.V.; Nevsky, S.A.; Sarychev, V.D.; Budovskikh, E.A.; Rubannikova, Y.A. Structure and Hardening of Silumin Modified by Electron-Ion Plasma; SibGIU: Novokuznetsk, Russia, 2020; p. 285. [Google Scholar]
- Egerton, F.R. Physical Principles of Electron Microscopy; Springer International Publishing: Basel, Switzerland, 2016; p. 196. [Google Scholar]
- Kumar, C.S.S.R. Transmission Electron Microscopy. Characterization of Nanomaterials; Springer: New York, NY, USA, 2014; p. 717. [Google Scholar]
- Carter, C.B.; Williams, D.B. Transmission Electron Microscopy; Springer International Publishing: Cham, Switzerland, 2016; p. 518. [Google Scholar]
- Ivanov, Y.F.; Zagulyaev, D.V.; Nevskii, S.A.; Gromov, V.E.; Sarychev, V.D.; Semin, A.P. Microstructure and properties of hypoeutectic silumin treated by high-current pulsed electron beams. Prog. Phys. Met. 2019, 20, 447–484. [Google Scholar] [CrossRef] [Green Version]
- Zaguliaev, D.; Konovalov, S.; Ivanov, Y.; Abaturova, A.; Leonov, A. Microstructure and Microhardness of Piston Alloy Al-10Si-2Cu Irradiated by Pulsed Electron Beam. Arch. Foundry Eng. 2020, 20, 92–98. [Google Scholar]
- Bannykh, O.A.; Budberg, P.B.; Alisova, S.P.; Guzey, L.S.; Drits, M.E.; Dobatkina, T.V.; Lysova, E.V.; Nikitina, N.I.; Padezhnova, E.M.; Rokhlin, L.L.; et al. State Diagrams of Binary and Multicomponent Systems Based on Iron; Metallurgy: Moscow, Russia, 1986. [Google Scholar]
- Utevsky, L.M. Diffraction Electron Microscopy in Metal Science; Metallurgy: Moscow, Russia, 1973; p. 584. [Google Scholar]
- Thomas, G.; Goringe, M.J. Transmission Electron Microscopy of Materials; Nauka: Moscow, Russia, 1983; p. 320. [Google Scholar]
Al | Si | Fe | Cu | Mn | Ni | Ti | Cr |
---|---|---|---|---|---|---|---|
78.52 ± 10% | 20.28 ± 10% | 1.14 ± 10% | 0.072 ± 10% | 0.015 ± 10% | 0.006 ± 10% | 0.006 ± 10% | 0.001 ± 10% |
Mode No. | Mass of the Aluminum Foil, mAl (mg) | Discharge Voltage, U (kV) | Electron Beam Energy Density, J/cm2 | Energy of Accelerated Electrons, keV | Duration of Electron Beam Pulse, µs | Number of Current Pulses | Pulse Repetition Rate, s−1 | |
---|---|---|---|---|---|---|---|---|
1 | 58.9 | 58.9 | 2.8 | 35 | 18 | 150 | 3 | 0.3 |
2 | 58.9 | 88.3 | 2.6 | 25 |
Sample | Determined Phases | Phase Content, Mas. % | Lattice Constant, Ǻ | Size of the Coherent Scattering Region, nm | Δd/d∗10−3 |
---|---|---|---|---|---|
No. 1–35 J/cm2 | Al(Si) | 73.0 | a = 4.0509 | 94.3 | 0.761 |
Si | 16.8 | a = 5.4437 | 16.27 | 1.026 | |
Y2O3 | 3.8 | a = 10.5080 | 24.09 | 7.588 | |
YSi2 | 6.4 | a = 3.8995 b = 4.1392 c = 13.2821 | 18.59 | 2.142 | |
No. 2–25 J/cm2 | Al(Si) | 71.5 | a = 4.0516 | 320.53 | 1.853 |
Si | 25.9 | a = 5.4341 | 41.92 | 1.589 | |
Y2O3 | 2.6 | a = 10.5871 | 13.8 | 2.509 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shliarova, Y.; Zaguliaev, D.; Ivanov, Y.; Gromov, V.; Prudnikov, A. Structure–Phase Transformations in the Modified Surface of Al-20%Si Alloy Subjected to Two-Stage Treatment. Lubricants 2022, 10, 133. https://doi.org/10.3390/lubricants10070133
Shliarova Y, Zaguliaev D, Ivanov Y, Gromov V, Prudnikov A. Structure–Phase Transformations in the Modified Surface of Al-20%Si Alloy Subjected to Two-Stage Treatment. Lubricants. 2022; 10(7):133. https://doi.org/10.3390/lubricants10070133
Chicago/Turabian StyleShliarova, Yulia, Dmitrii Zaguliaev, Yurii Ivanov, Victor Gromov, and Alexander Prudnikov. 2022. "Structure–Phase Transformations in the Modified Surface of Al-20%Si Alloy Subjected to Two-Stage Treatment" Lubricants 10, no. 7: 133. https://doi.org/10.3390/lubricants10070133
APA StyleShliarova, Y., Zaguliaev, D., Ivanov, Y., Gromov, V., & Prudnikov, A. (2022). Structure–Phase Transformations in the Modified Surface of Al-20%Si Alloy Subjected to Two-Stage Treatment. Lubricants, 10(7), 133. https://doi.org/10.3390/lubricants10070133