Macroscale Superlubricity of Black Phosphorus Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of BPQDs, Baq and BGaq
2.2. Characterization of BPQDs
2.3. Tribological Tests
2.4. Characterization of the Worn Surfaces
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Φ | The diameter of the Si3N4 ball |
Ra | The roughness of the friction pairs |
WB | Wear rate |
V | Wear volume |
P | Normal load |
S | Sliding distance of the Si3N4 ball |
hmin | The minimum lubrication film thickness |
α | Pressure-viscosity coefficient |
R | Equivalent radius of the Si3N4 ball |
u | Sliding speed of the Si3N4 ball and SiO2 plate |
Dynamic lubricant viscosity | |
E′ | Effective modulus of elasticity of the friction pair |
W | Applied load |
vi | Poisson’s ratio of the friction pair |
Ei | Elasticity modulus of the friction pair |
E′ | Effective elastic modulus of the friction pair |
d | Diameter of the worn scar of the ball |
λ | The ratio of the theoretical minimum film thickness to the roughness |
σ | The roughness of the friction pair after the tests |
References
- Hirano, M.; Shinjo, K. Atomistic locking and friction. Phys. Rev. B 1990, 41, 11837–11851. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, A.; Eryilmaz, O. Achieving superlubricity in dlc films by controlling bulk, surface, and tribochemistry. Friction 2014, 2, 140–155. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Mei, H.; Chang, P.; Yang, Y.; Huang, W.; Liu, Y.; Cheng, L.; Zhang, L. 3D-Printed Topological Mos2/Mose2heterostructures for Macroscale Superlubricity. Acs Appl. Mater. Interfaces 2021, 13, 34984–34995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y. Superlubricity in Carbon Nanostructural Films: From Mechanisms to Modulating Strategies. In Superlubricity; Elsevier Bv: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Bakoglidis, K.D.; Palisaitis, J.; Dos Santos, R.B.; Rivelino, R.; Persson, P.O.; Gueorguiev, G.K.; Hultman, L. Self-Healing in carbon nitride evidenced as material inflation and superlubric behavior. Acs Appl. Mater. Interfaces 2018, 10, 16238–16243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, K.; Xu, Q.; Zhang, J.; Hu, Y.; Ma, T.; Zheng, Q.; Luo, J. Superlubricity between graphite layers in ultrahigh vacuum. Acs Appl. Mater. Interfaces 2020, 12, 43167–43172. [Google Scholar] [CrossRef] [PubMed]
- Røn, T.; Javakhishvili, I.; Hvilsted, S.; Jankova, K.; Lee, S. Ultralow friction with hydrophilic polymer brushes in water as segregated from silicone matrix. Adv. Mater. Interfaces 2016, 3, 1500472. [Google Scholar] [CrossRef] [Green Version]
- Fajardo, O.Y.; Bresme, F.; Kornyshev, A.A.; Urbakh, M. Electrotunable lubricity with ionic liquid nanoscale films. Sci. Rep. 2015, 5, 7698. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Qu, J. Ionic Liquids as lubricant additives: A review. Acs Appl. Mater. Interfaces 2017, 9, 3209–3222. [Google Scholar] [CrossRef]
- Ge, X.; Li, J.; Zhang, C.; Luo, J. Liquid superlubricity of polyethylene glycol aqueous solution achieved with boric acid additive. Langmuir 2018, 34, 3578–3587. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Li, J.; Luo, J. Investigation of superlubricity achieved by polyalkylene glycol aqueous solutions. Adv. Mater. Interfaces 2016, 3, 1600531. [Google Scholar] [CrossRef]
- Ma, Q.; He, T.; Khan, A.M.; Wang, Q.; Chung, Y.W. Achieving macroscale liquid superlubricity using glycerol aqueous solutions. Tribol. Int. 2021, 160, 107006. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.; Liu, Y.; Li, J.; Erdemir, A.; Luo, J. Mechanism of superlubricity conversion with polyalkylene glycol aqueous solutions. Langmuir 2019, 35, 11784–11790. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Zhang, C.; Li, J.; Ma, L.; Luo, J. Hydrodynamic Effect on the superlubricity of phosphoric acid between ceramic and sapphire. Friction 2014, 2, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, C.; Deng, M.; Luo, J. Investigations of the superlubricity of sapphire against ruby under phosphoric acid lubrication. Friction 2014, 2, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Li, J.; Chen, L.; Zhang, C.; Zhou, N.; Qian, L.; Luo, J. Speed Dependence of liquid superlubricity stability with H3PO4 solution. R. Soc. Chem. 2017, 7, 49337–49343. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Chen, X.; Li, J.; Liu, Y.; Ding, S.; Luo, J. Macroscale Superlubricity of Si-Doped Diamond-Like Carbon Film Enabled by Graphene Oxide As Additives. Carbon 2021, 176, 358–366. [Google Scholar] [CrossRef]
- Yi, S.; Li, J.; Liu, Y.; Ge, X.; Zhang, J.; Luo, J. In-Situ Formation of Tribofilm with Ti3c2tx Mxene Nanoflakes Triggers Macroscale Superlubricity. Tribol. Int. 2021, 154, 106695. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Liu, W.; Liu, Y.; Wang, K.; Li, J.; Ma, T.; Eryilmaz, O.L.; Shi, Y.; Erdemir, A.; et al. Superlubricity of Polyalkylene Glycol Aqueous Solutions Enabled by Ultrathin Layered Double Hydroxide Nanosheets. Acs Appl. Mater. Interfaces 2019, 11, 20249–20256. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Li, J.; Yi, S.; Ge, X.; Zhang, X.; Luo, J. Shear-Induced interfacial structural conversion triggers macroscale superlubricity: From black phosphorus nanoflakes to phosphorus oxide. Acs Appl. Mater. Interfaces 2021, 13, 31947–31956. [Google Scholar] [CrossRef]
- Tang, G.; Wu, Z.; Su, F.; Wang, H.; Xu, X.; Li, Q.; Ma, G.; Chu, P.K. Macroscale Superlubricity on engineering steel in the presence of black phosphorus. Nano Lett. 2021, 21, 5308–5315. [Google Scholar] [CrossRef]
- Wang, W.; Xie, G.; Luo, J. Superlubricity of black phosphorus as lubricant additive. Acs Appl. Mater. Interfaces 2018, 10, 43203–43210. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Yang, X. Superlubricity under ultrahigh contact pressure enabled by partially oxidized black phosphorus nanosheets. Npj 2D Mater. Appl. 2021, 5, 44. [Google Scholar] [CrossRef]
- Ren, X.; Yang, X.; Xie, G.; Luo, J. Black phosphorus quantum dots in aqueous ethylene glycol for macroscale superlubricity. Acs Appl. Nano Mater. 2020, 3, 4799–4809. [Google Scholar] [CrossRef]
- Wu, S.; He, F.; Xie, G.; Bian, Z.; Luo, J.; Wen, S. Black Phosphorus: Degradation favors lubrication. Nano Lett. 2018, 18, 5618–5627. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; He, F.; Xie, G.; Bian, Z.; Ren, Y.; Liu, X.; Yang, H.; Guo, D.; Zhang, L.; Wen, S.; et al. Super-Slippery degraded black phosphorus/silicon dioxide interface. Acs Appl. Mater. Interfaces 2020, 12, 7717–7726. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, T.; Wang, W.; Zhang, G.; Gao, Y.; Wang, K. Tribological Behavior of black phosphorus nanosheets as water-based lubrication additives. Friction 2022, 10, 374–387. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, T.; Wang, W.; Zhang, G.; Gao, Y.; Wang, K. Tribological properties of black phosphorus nanosheets as oil-based lubricant additives for titanium alloy-steel contacts: Lubricaiton of black phosphene. R. Soc. Open Sci. 2020, 7, 200530. [Google Scholar] [CrossRef]
- Tang, G.; Su, F.; Xu, X.; Chu, P.K. 2d Black Phosphorus dotted with silver nanoparticles: An excellent lubricant additive for tribological applications. Chem. Eng. J. 2020, 392, 123631. [Google Scholar] [CrossRef]
- Tang, W.; Jiang, Z.; Wang, B.; Li, Y. Black phosphorus quantum dots: A new-type of water-based high-efficiency lubricant additive. Friction 2021, 9, 1528–1542. [Google Scholar] [CrossRef]
- Liu, H.; Lian, P.; Tang, Y.; Zhao, Z.; Mei, Y. The preparation of black phosphorus quantum dots by gas exfoliation with the assistance of liquid N 2. J. Nanosci. Nanotechnol. 2020, 20, 6458–6462. [Google Scholar] [CrossRef]
- Sun, D.; Kang, S.; Liu, C.; Lu, Q.; Cui, L.; Hu, B. Effect of Zeta Potential and Particle Size on the Stability of SiO2 Nanospheres as Carrier For Ultrasound Imaging Contrast Agents. Int. J. Electrochem. Sci. 2016, 11, 8520–8529. [Google Scholar] [CrossRef]
- Wang, P.; Keller, A.A. Natural and engineered nano and colloidal transport: Role of zeta potential in prediction of particle deposition. Langmuir 2009, 25, 6856–6862. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Y. Superlubricity Achieved with two-dimensional nano-additives to liquid lubricants. Friction 2020, 8, 1007–1024. [Google Scholar] [CrossRef]
- Dietrich, P.M.; Streeck, C.; Glamsch, S.; Ehlert, C.; Lippitz, A.; Nutsch, A.; Kulak, N.; Beckhoff, B.; Unger, W.E.S. Quantification of silane molecules on oxidized silicon: Are There options for a traceable and absolute determination? Anal. Chem. 2015, 87, 10117–10124. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Li, J.; Zhang, C.; Liu, Y.; Luo, J. Superlubricity And antiwear properties of in situ-formed ionic liquids at ceramic Interfaces induced by tribochemical reactions. Acs Appl. Mater. Interfaces 2019, 11, 6568–6574. [Google Scholar] [CrossRef]
- Xu, J.; Kato, K. Formation of tribochemical layer of ceramics sliding in water and its role for low friction. Wear 2000, 245, 61–75. [Google Scholar] [CrossRef]
- Nakamura, Y.; Muto, J.; Nagahama, H.; Shimizu, I.; Miura, T.; Arakawa, I. Amorphization of quartz by friction: Implication to silica-gel lubrication of fault surfaces. Geophys. Res. Lett. 2012, 39, 2–7. [Google Scholar] [CrossRef]
- Dowson, D.; Higginson, G.R. Elasto-Hydrodynamic Lubrication: International Series On Materials Science and Technology; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Li, J.; Zhang, C.; Deng, M.; Luo, J. Investigation of the difference in liquid superlubricity between water- and oil-based lubricants. Rsc Adv. 2015, 5, 63827–63833. [Google Scholar] [CrossRef]
- Shi, Y.; Minami, I.; Grahn, M.; Björling, M.; Larsson, R. Boundary and elastohydrodynamic lubrication studies of glycerol aqueous solutions as green lubricants. Tribol. Int. 2014, 69, 39–45. [Google Scholar] [CrossRef]
- Long, Y.; Bouchet, M.I.D.B.; Lubrecht, T.; Onodera, T.; Martin, J.M. Superlubricity of glycerol by self-sustained chemical polishing. Sci. Rep. 2019, 9, 6286. [Google Scholar] [CrossRef]
Condition | Average COFs | Wear Volume /um3 | ||
---|---|---|---|---|
Si3N4 Ball | SiO2 Plate | |||
Ultrapure Water | 3 N, 62.8 mm·s−1 | / | 4.1054 × 106 | 5.3800 × 107 |
Baq with different concentration | 0.01 wt% | 0.0071 | 1.0514 × 106 | 2.2980 × 107 |
0.015 wt% | 0.0024 | 5.2355 × 105 | 1.1660 × 107 | |
0.002 wt% | 0.0034 | 7.7463 × 105 | 1.6740 × 107 | |
0.004 wt% | 0.0062 | 5.8154 × 105 | 1.4960 × 107 | |
Baq with different load | 2.0 N | 0.007 | 3.8851 × 105 | 1.0490 × 107 |
2.5 N | 0.0038 | 4.5477 × 105 | 1.3730 × 107 | |
3.5 N | 0.0049 | 1.2518 × 106 | 1.5720 × 107 | |
Baq with different sliding speed | 31.4 mm∙s−1 | 0.0072 | 7.5252 × 105 | 3.0560 × 107 |
94.2 mm∙s−1 | 0.0038 | 1.4740 × 106 | 1.3180 × 107 | |
125.6 mm∙s−1 | 0.0027 | 1.1428 × 106 | 1.4230 × 107 |
Condition | Average COFs | Wear Volume /um3 | ||
---|---|---|---|---|
Si3N4 Ball | SiO2 Plate | |||
Gaq | 3N, 62.8 mm·s−1 | / | 1.5298 × 105 | 6.40 × 106 |
BGaq with different concentration | 0.01 wt% | 0.0076 | 1.2580 × 105 | 4.96 × 106 |
0.015 wt% | 0.0065 | 1.1647 × 105 | 4.28 × 106 | |
0.02 wt% | 0.0077 | 1.5081 × 105 | 3.82 × 106 | |
0.04 wt% | 0.008 | 2.0608 × 105 | 2.14 × 106 | |
BGaq with different load | 0.5 N | 0.004 | 1.0700 × 105 | 4.00 × 106 |
1.0 N | 0.0065 | 3.7734 × 104 | 5.80 × 106 | |
1.5 N | 0.0074 | 4.6759 × 104 | 5.37 × 106 | |
2.0 N | 0.0083 | 7.1887 × 104 | 4.31 × 106 | |
2.5 N | 0.0063 | 1.0485 × 105 | 4.24 × 106 | |
3.5 N | 0.0088 | 1.6510 × 105 | 4.52 × 106 | |
BGaq with different sliding speed | 94.2 mm∙s−1 | 0.0055 | 1.4154 × 105 | 5.99 × 106 |
125.6 mm∙s−1 | 0.0083 | 1.5761 × 105 | 1.52 × 107 | |
157.0 mm∙s−1 | 0.0095 | 2.3144 × 105 | 3.93 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, P.; Qu, Y.; Wang, W.; Lv, F.; Jin, J. Macroscale Superlubricity of Black Phosphorus Quantum Dots. Lubricants 2022, 10, 158. https://doi.org/10.3390/lubricants10070158
Gong P, Qu Y, Wang W, Lv F, Jin J. Macroscale Superlubricity of Black Phosphorus Quantum Dots. Lubricants. 2022; 10(7):158. https://doi.org/10.3390/lubricants10070158
Chicago/Turabian StyleGong, Penghui, Yishen Qu, Wei Wang, Fanfan Lv, and Jie Jin. 2022. "Macroscale Superlubricity of Black Phosphorus Quantum Dots" Lubricants 10, no. 7: 158. https://doi.org/10.3390/lubricants10070158
APA StyleGong, P., Qu, Y., Wang, W., Lv, F., & Jin, J. (2022). Macroscale Superlubricity of Black Phosphorus Quantum Dots. Lubricants, 10(7), 158. https://doi.org/10.3390/lubricants10070158