CPU Performance Improvement Using Novel Thermally Conductive Carbon Nano Grease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siricharoenpanich, A.; Wiriyasart, S.; Naphon, P. Study on the thermal dissipation performance of GPU cooling system with nanofluid as coolant. Case Stud. Therm. Eng. 2021, 25, 100904. [Google Scholar] [CrossRef]
- Bahiraei, M.; Heshmatian, S. Electronics cooling with nanofluids: A critical review. Energy Convers. Manag. 2018, 172, 438–456. [Google Scholar] [CrossRef]
- Naphon, P.; Wiriyasart, S.; Wongwises, S. Thermal cooling enhancement techniques for electronic components. Int. Commun. Heat Mass Transf. 2015, 61, 140–145. [Google Scholar] [CrossRef]
- Ma, K.-Q.; Liu, J. Heat-driven liquid metal cooling device for the thermal management of a computer chip. J. Phys. D Appl. Phys. 2007, 40, 4722. [Google Scholar] [CrossRef]
- Li, H.-Y.; Chao, S.-M.; Tsai, G.-L. Thermal performance measurement of heat sinks with confined impinging jet by infrared thermography. Int. J. Heat Mass Transf. 2005, 48, 5386–5394. [Google Scholar] [CrossRef]
- Naphon, P.; Wiriyasart, S. Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU. Int. Commun. Heat Mass Transf. 2009, 36, 166–171. [Google Scholar] [CrossRef]
- Stephan, K.; Laesecke, A. The thermal conductivity of fluid air. J. Phys. Chem. Ref. Data 1985, 14, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Shishkin, R.A. Investigation of Thermal Greases with Hybrid Fillers and Its Operational Bench Test. J. Electron. Mater. 2022, 51, 1189–1201. [Google Scholar] [CrossRef]
- Christensen, G.; Younes, H.; Hong, H.; Peterson, G. Alignment of carbon nanotubes comprising magnetically sensitive metal oxides by nonionic chemical surfactants. J. Nanofluids 2013, 2, 25–28. [Google Scholar] [CrossRef]
- Wu, S.-W.; Chang, T.-C.; Lin, Y.-H.; Chen, H.-F.; Fuh, Y.-K. Fabrication of copper powder hybrid supported fillers with interconnected 1D/2D/3D nanostructures for enhanced thermal interface materials properties. Int. J. Adv. Manuf. Technol. 2022, 121, 3453–3462. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Liang, T.; Bai, X.; Pang, Y.; Zeng, X.; Hu, Q.; Tu, W.; Ye, Z.; Du, G. Thermal interface materials with both high through-plane thermal conductivity and excellent elastic compliance. Chem. Mater. 2021, 33, 8926–8937. [Google Scholar] [CrossRef]
- Chen, H.; Wei, H.; Chen, M.; Meng, F.; Li, H.; Li, Q. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes. Appl. Surf. Sci. 2013, 283, 525–531. [Google Scholar] [CrossRef]
- Hansson, J.; Nilsson, T.M.J.; Ye, L.; Liu, J. Novel nanostructured thermal interface materials: A review. Int. Mater. Rev. 2018, 63, 22–45. [Google Scholar] [CrossRef]
- Ge, X.; Chen, Y.; Liu, W.; Zhang, G.; Li, X.; Ge, J.; Li, C. Liquid cooling system for battery modules with boron nitride based thermal conductivity silicone grease. RSC Adv. 2022, 12, 4311–4321. [Google Scholar] [CrossRef]
- Christensen, G.; Younes, H.; Hong, G.; Lou, D.; Hong, H.; Widener, C.; Bailey, C.; Hrabe, R. Hydrogen bonding enhanced thermally conductive carbon nano grease. Synth. Met. 2020, 259, 116213. [Google Scholar] [CrossRef]
- Christensen, G.; Grablander, T.; Bailey, C.; Lou, D.; Hong, H. Increasing Engine Efficiency with Friction Reducing-Oil Additives. In Proceedings of the TechConnect Briefs, Washington, DC, USA, 18 October 2021; pp. 267–270. [Google Scholar]
- Ren, P.-G.; Si, X.-H.; Sun, Z.-F.; Ren, F.; Pei, L.; Hou, S.-Y. Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultra-high-molecular-weight polyethylene composites with a segregated structure. J. Polym. Res. 2016, 23, 21. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Yin, L.; Zhao, J.; Xia, L.; Chen, L. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina. Int. J. Therm. Sci. 2015, 91, 76–82. [Google Scholar] [CrossRef]
- Chen, C.; He, Y.; Liu, C.; Xie, H.; Yu, W. Comprehensive excellent performance for silicone-based thermal interface materials through the synergistic effect between graphene and spherical alumina. J. Mater. Sci. Mater. Electron. 2020, 31, 4642–4649. [Google Scholar] [CrossRef]
- Liang, W.; Ge, X.; Ge, J.; Li, T.; Zhao, T.; Chen, X.; Zhang, M.; Ji, J.; Pang, X.; Liu, R. Three-Dimensional Heterostructured Reduced Graphene Oxide-Hexagonal Boron Nitride-Stacking Material for Silicone Thermal Grease with Enhanced Thermally Conductive Properties. Nanomaterials 2019, 9, 938. [Google Scholar] [CrossRef] [Green Version]
- Younes, H.; Christensen, G.; Horton, M.; Al Ghaferi, A.; Hong, H.; Qiang, Y. TC study of manufacturable nano grease: Evidence of 3D network structure. Nanomanuf. Metrol. 2018, 1, 148–155. [Google Scholar] [CrossRef]
- Younes, H.; Lou, D.; Hong, H.; Chen, H.; Liu, H.; Qiang, Y. Manufacturable Novel Nanogrease with Superb Physical Properties. Nanomanufacturing Metrol. 2021, 4, 289–297. [Google Scholar] [CrossRef]
- Christensen, G.; Yang, J.; Lou, D.; Hong, G.; Hong, H.; Tolle, C.; Widener, C.; Bailey, C.; Hrabe, R.; Younes, H. Carbon nanotubes grease with high electrical conductivity. Synth. Met. 2020, 268, 116496. [Google Scholar] [CrossRef]
- Nazari, M.; Karami, M.; Ashouri, M. Comparing the thermal performance of water, Ethylene Glycol, Alumina and CNT nanofluids in CPU cooling: Experimental study. Exp. Therm. Fluid Sci. 2014, 57, 371–377. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Sabbaghzadeh, J.; Lajevardi, M.; Hadi, I. Cooling performance of a microchannel heat sink with nanofluids containing cylindrical nanoparticles (carbon nanotubes). Heat Mass Transf. 2010, 46, 549–553. [Google Scholar] [CrossRef]
- Guo, W.; Li, G.; Zheng, Y.; Dong, C. Numerical study of nanofluids thermal and hydraulic characteristics considering Brownian motion effect in micro fin heat sink. J. Mol. Liq. 2018, 264, 38–47. [Google Scholar] [CrossRef]
- Lou, D.; Grablander, T.; Mao, M.; Hong, H.; Peterson, G. Improved thermal conductivity of PEG-based fluids using hydrogen bonding and long chain of nanoparticle. J. Nanoparticle Res. 2021, 23, 98. [Google Scholar] [CrossRef]
Mean | |||||||||
---|---|---|---|---|---|---|---|---|---|
3.3 GHz Testing | 3.9 GHz Testing | ||||||||
Kryonaut | MX4 | PMS3-15 | PMS 5-5 | Kryonaut | MX4 | PMS3-15 | PMS 5-5 | ||
Core #0 | 2996.968 | 2996.356 | 2996.820 | 2997.016 | Core #0 | 3597.356 | 3595.251 | 3596.214 | 3598.422 |
Core #1 | 2996.927 | 2996.317 | 2996.860 | 2997.070 | Core #1 | 3597.020 | 3595.251 | 3596.167 | 3597.253 |
Core #2 | 2996.886 | 2996.317 | 2996.820 | 2997.016 | Core #2 | 3596.432 | 3593.069 | 3596.167 | 3572.338 |
Core #3 | 2996.886 | 2996.317 | 2996.820 | 2997.016 | Core #3 | 3596.432 | 3595.251 | 3596.167 | 3597.201 |
Core #4 | 2996.886 | 2996.317 | 2996.820 | 2997.016 | Core #4 | 3596.516 | 2996.116 | 3596.167 | 3597.175 |
Core #5 | 2996.886 | 2996.317 | 2996.820 | 2997.016 | Core #5 | 3596.474 | 2996.116 | 3596.167 | 3597.201 |
Core #6 | 2996.886 | 2996.317 | 2996.901 | 2997.016 | Core #6 | 3596.432 | 2996.116 | 3596.167 | 3597.851 |
Core #7 | 2996.886 | 2996.317 | 2996.820 | 2997.016 | Core #7 | 3596.432 | 2996.116 | 3596.167 | 3597.318 |
Core #8 | 2996.969 | 2996.356 | 2996.820 | 2997.016 | Core #8 | 3596.432 | 2996.116 | 3596.167 | 3597.201 |
Core #9 | 2996.886 | 2996.317 | 2996.820 | 2997.016 | Core #9 | 3596.432 | 2996.116 | 3596.167 | 3597.240 |
Mean | 2996.906 | 2996.325 | 2996.832 | 2997.021 | Mean | 3596.596 | 3235.552 | 3596.171 | 3594.920 |
Standard Deviation | |||||||||
3.3 GHz Testing | 3.9 GHz Testing | ||||||||
Kryonaut | MX4 | PMS3-15 | PMS 5-5 | Kryonaut | MX4 | PMS3-15 | PMS 5-5 | ||
Core #0 | 8.571 | 9.006 | 5.645 | 8.083 | Core #0 | 18.769 | 6.295 | 6.581 | 21.081 |
Core #1 | 7.855 | 8.326 | 6.654 | 9.125 | Core #1 | 16.091 | 6.295 | 5.384 | 12.880 |
Core #2 | 7.019 | 8.326 | 5.645 | 8.083 | Core #2 | 9.002 | 19.466 | 5.384 | 65.369 |
Core #3 | 7.019 | 8.326 | 5.645 | 8.083 | Core #3 | 9.002 | 6.295 | 5.384 | 10.680 |
Core #4 | 7.019 | 8.326 | 5.645 | 8.083 | Core #4 | 10.290 | 5.601 | 5.384 | 11.516 |
Core #5 | 7.019 | 8.326 | 5.645 | 8.083 | Core #5 | 9.678 | 5.601 | 5.384 | 10.680 |
Core #6 | 7.019 | 8.326 | 7.491 | 8.083 | Core #6 | 9.002 | 5.601 | 5.384 | 17.283 |
Core #7 | 7.019 | 8.326 | 5.645 | 8.083 | Core #7 | 9.002 | 5.601 | 5.384 | 12.316 |
Core #8 | 8.635 | 9.006 | 5.645 | 8.083 | Core #8 | 9.002 | 5.601 | 5.384 | 10.553 |
Core #9 | 7.019 | 8.326 | 5.645 | 8.083 | Core #9 | 9.002 | 5.601 | 5.384 | 11.216 |
Mean | 7.419 | 8.462 | 5.931 | 8.187 | Mean | 10.884 | 7.195 | 5.504 | 18.358 |
Mean | |||||||||
---|---|---|---|---|---|---|---|---|---|
3.3 GHz Testing | 3.9 GHz Testing | ||||||||
Kryonaut | MX4 | PMS3-15 | PMS5-5 | Kryonaut | MX4 | PMS3-15 | PMS5-5 | ||
Core #0 | 52.9 | 59.6 | 57.1 | 57.3 | Core #0 | 72.0 | 78.1 | 79.1 | 80.1 |
Core #1 | 60.7 | 74.5 | 64.1 | 63.3 | Core #1 | 84.2 | 95.3 | 91.1 | 88.8 |
Core #2 | 67.2 | 79.1 | 68.9 | 71.4 | Core #2 | 97.6 | 102.5 | 99.8 | 103.2 |
Core #3 | 62.8 | 77.8 | 64.2 | 65.3 | Core #3 | 89.8 | 100.5 | 93.7 | 92.7 |
Core #4 | 53.3 | 65.9 | 57.0 | 58.1 | Core #4 | 72.3 | 72.9 | 77.3 | 79.9 |
Core #5 | 56.2 | 60.1 | 60.4 | 62.2 | Core #5 | 77.2 | 66.9 | 84.0 | 87.6 |
Core #6 | 61.6 | 75.6 | 63.0 | 64.1 | Core #6 | 87.2 | 90.9 | 90.3 | 90.0 |
Core #7 | 60.1 | 74.4 | 63.3 | 62.8 | Core #7 | 83.9 | 88.3 | 90.3 | 87.9 |
Core #8 | 65.9 | 79.3 | 68.3 | 70.9 | Core #8 | 95.2 | 94.9 | 98.0 | 101.4 |
Core #9 | 55.6 | 66.6 | 59.1 | 61.7 | Core #9 | 77.7 | 72.9 | 82.8 | 87.1 |
Mean | 59.6 | 71.3 | 62.5 | 63.7 | Mean | 83.7 | 86.3 | 88.6 | 89.9 |
Standard Deviation | |||||||||
3.3 GHz Testing | 3.9 GHz Testing | ||||||||
Kryonaut | MX4 | PMS3-15 | PMS5-5 | Kryonaut | MX4 | PMS3-15 | PMS5-5 | ||
Core #0 | 1.0 | 1.0 | 0.7 | 0.8 | Core #0 | 3.2 | 1.7 | 1.2 | 1.7 |
Core #1 | 0.8 | 1.1 | 0.5 | 0.8 | Core #1 | 3.9 | 1.7 | 1.1 | 1.8 |
Core #2 | 0.8 | 1.0 | 0.6 | 0.9 | Core #2 | 1.6 | 1.6 | 1.4 | 1.2 |
Core #3 | 0.7 | 1.0 | 0.4 | 0.6 | Core #3 | 1.2 | 1.3 | 1.4 | 1.1 |
Core #4 | 0.7 | 0.8 | 0.2 | 0.4 | Core #4 | 2.8 | 1.0 | 0.8 | 1.0 |
Core #5 | 0.6 | 0.7 | 0.5 | 0.6 | Core #5 | 2.7 | 0.9 | 0.7 | 0.9 |
Core #6 | 0.6 | 0.9 | 0.6 | 0.6 | Core #6 | 1.4 | 1.3 | 1.2 | 1.5 |
Core #7 | 0.7 | 0.8 | 0.5 | 0.5 | Core #7 | 1.9 | 1.3 | 0.9 | 1.3 |
Core #8 | 1.2 | 0.9 | 0.7 | 0.6 | Core #8 | 1.8 | 1.3 | 1.3 | 1.3 |
Core #9 | 0.6 | 0.8 | 0.3 | 0.5 | Core #9 | 1.1 | 1.0 | 0.6 | 0.9 |
Mean | 0.8 | 0.9 | 0.5 | 0.6 | Mean | 2.2 | 1.3 | 1.1 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grablander, T.; Christensen, G.; Bailey, C.; Lou, D.; Hong, H.; Younes, H. CPU Performance Improvement Using Novel Thermally Conductive Carbon Nano Grease. Lubricants 2022, 10, 172. https://doi.org/10.3390/lubricants10080172
Grablander T, Christensen G, Bailey C, Lou D, Hong H, Younes H. CPU Performance Improvement Using Novel Thermally Conductive Carbon Nano Grease. Lubricants. 2022; 10(8):172. https://doi.org/10.3390/lubricants10080172
Chicago/Turabian StyleGrablander, Travis, Greg Christensen, Craig Bailey, Ding Lou, Haiping Hong, and Hammad Younes. 2022. "CPU Performance Improvement Using Novel Thermally Conductive Carbon Nano Grease" Lubricants 10, no. 8: 172. https://doi.org/10.3390/lubricants10080172
APA StyleGrablander, T., Christensen, G., Bailey, C., Lou, D., Hong, H., & Younes, H. (2022). CPU Performance Improvement Using Novel Thermally Conductive Carbon Nano Grease. Lubricants, 10(8), 172. https://doi.org/10.3390/lubricants10080172