Numerical Investigation of Elastic Layer Effects in Wheel–Rail Rolling Contact
Abstract
:1. Introduction
2. FE Modeling
2.1. Problem Statement
2.2. FE Model of Wheel–Rail Rolling Contact
2.3. Simulation Cases
2.4. Process of Contact Solutions
3. Validation
4. Numerical Results
4.1. Layer Effects on Contact Stresses at the Interface
4.1.1. Layer Effect on Contact Pressure
4.1.2. Layer Effect on Surface Shear Stress
4.2. Layer Effects on Stick–Slip and Size of Contact Patch
4.3. Layer Effects on Subsurface Stresses
4.3.1. Layer Effects on v-m Stress
4.3.2. Layer Effects on
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vermeulen, P.J.; Johnson, K.L. Contact of Nonspherical Elastic Bodies Transmitting Tangential Forces. J. Appl. Mech. 1964, 31, 338–340. [Google Scholar] [CrossRef]
- Kalker, J.J. Three-Dimensional Elastic Bodies in Rolling Contact; Springer: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Hieu Nguyen, B.; Al-Juboori, A.; Zhu, H.; Zhu, Q.; Li, H.; Tieu, K. Formation Mechanism and Evolution of White Etching Layers on Different Rail Grades. Int. J. Fatigue 2022, 163, 107100. [Google Scholar] [CrossRef]
- McDermott, A. Railway Track Material Part 1: Steel Rails; Rail Industry Safety and Standards Board: Spring Hill, Australia, 2019; ISBN 978-1-76072-598-3. [Google Scholar]
- Clayton, P.; Allery, M.B.P. Metallurgical Aspects of Surface Damage Problems in Rails. Can. Metall. Q. 1982, 21, 31–46. [Google Scholar] [CrossRef]
- Xu, T.; Zeng, D.; Lu, L.; Chen, G.; Zou, Q. Numerical Investigation of the Formation of White Etching Layer in Wheel Steel with High Si and Mn Contents. Eng. Fail. Anal. 2021, 122, 105286. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Cheng, C.-M. Relationships between Hardness, Elastic Modulus, and the Work of Indentation. Appl. Phys. Lett. 1998, 73, 614–616. [Google Scholar] [CrossRef]
- Xie, T.; Zhou, L.; Ding, H.; Zhu, Y.; Yang, W.; Xiao, Q.; Wang, W.; Guo, J.; Liu, Q. Investigation on the Rolling Contact Fatigue Behaviors of Different Laser Cladding Materials on the Damaged Rail. J. Tribol. 2021, 143, 051108. [Google Scholar] [CrossRef]
- Berthier, Y.; Descartes, S.; Busquet, M.; Niccolini, E.; Desrayaud, C.; Baillet, L.; Baietto-Dubourg, M.C. The Role and Effects of the Third Body in the Wheel-Rail Interaction. Fatigue Frac. Eng. Mater. Struct. 2004, 27, 423–436. [Google Scholar] [CrossRef]
- Zhang, G.-Z.; Liu, C.-P.; Wu, S.; Zhao, S.; Zhang, B. Rolling Contact Fatigue Damage of High-Speed Railway Wheels With Upper Bainite. J. Tribol. 2022, 144, 051502. [Google Scholar] [CrossRef]
- Zhou, Q.; Xie, L.; Jin, X.; Wang, Z.; Wang, J.; Keer, L.M.; Wang, Q. Numerical Modeling of Distributed Inhomogeneities and Their Effect on Rolling-Contact Fatigue Life. J. Tribol. 2015, 137, 011402. [Google Scholar] [CrossRef]
- Du, S.; Zhu, Z.; Liu, C.; Zhang, T.; Hossain, M.M.; Sue, H. Experimental Observation and Finite Element Method Modeling on Scratch-Induced Delamination of Multilayer Polymeric Structures. Polym. Eng. Sci. 2021, 61, 1742–1754. [Google Scholar] [CrossRef]
- Burton, R.A. An Analytical Investigation of Visco-Elastic Effects in the Lubrication of Rolling Contact. ASLE Trans. 1960, 3, 1–10. [Google Scholar] [CrossRef]
- Margetson, J. Rolling Contact of a Rigid Cylinder over a Smooth Elastic or Viscoelastic Layer. Acta Mech. 1972, 13, 1–9. [Google Scholar] [CrossRef]
- Londhe, N.D.; Arakere, N.K.; Subhash, G. Extended Hertz Theory of Contact Mechanics for Case-Hardened Steels With Implications for Bearing Fatigue Life. J. Tribol. 2018, 140, 021401. [Google Scholar] [CrossRef]
- Kalker, J.J. Viscoelastic Multilayered Cylinders Rolling With Dry Friction. J. Appl. Mech. 1991, 58, 666–679. [Google Scholar] [CrossRef]
- Meierhofer, A.; Hardwick, C.; Lewis, R.; Six, K.; Dietmaier, P. Third Body Layer—Experimental Results and a Model Describing Its Influence on the Traction Coefficient. Wear 2014, 314, 148–154. [Google Scholar] [CrossRef]
- Zhang, M.; Yan, Z. Effects of Near-Surface Composites on Frictional Rolling Contact Solved by a Semi-Analytical Model. J. Tribol. 2022, 144, 021502. [Google Scholar] [CrossRef]
- Xi, Y.; Björling, M.; Almqvist, A. A Numerical Model for Solving Three-Dimensional Rolling Contact Problems with Elastic Coating Layers. Tribol. Lett. 2021, 69, 139. [Google Scholar] [CrossRef]
- Goryacheva, I.; Miftakhova, A. Modelling of the Viscoelastic Layer Effect in Rolling Contact. Wear 2019, 430–431, 256–262. [Google Scholar] [CrossRef]
- Guler, M.A.; Adibnazari, S.; Alinia, Y. Tractive Rolling Contact Mechanics of Graded Coatings. Int. J. Solids Struct. 2012, 49, 929–945. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z. The Solution of Frictional Wheel–Rail Rolling Contact with a 3D Transient Finite Element Model: Validation and Error Analysis. Wear 2011, 271, 444–452. [Google Scholar] [CrossRef]
- Deng, X.; Qian, Z.; Dollevoet, R. Lagrangian Explicit Finite Element Modeling for Spin-Rolling Contact. J. Tribol. 2015, 137, 041401. [Google Scholar] [CrossRef]
- Wei, Z.; Li, Z.; Qian, Z.; Chen, R.; Dollevoet, R. 3D FE Modelling and Validation of Frictional Contact with Partial Slip in Compression–Shift–Rolling Evolution. Int. J. Rail Transp. 2016, 4, 20–36. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Dollevoet, R. The Vertical and the Longitudinal Dynamic Responses of the Vehicle–Track System to Squat-Type Short Wavelength Irregularity. Veh. Syst. Dyn. 2013, 51, 1918–1937. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Núñez, A.; Dollevoet, R. New Insights into the Short Pitch Corrugation Enigma Based on 3D-FE Coupled Dynamic Vehicle-Track Modeling of Frictional Rolling Contact. Appl. Sci. 2017, 7, 807. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Qian, Z.; Zhai, W.; Xiao, Q.; Dollevoet, R. Pre-Cracking Development of Weld-Induced Squats Due to Plastic Deformation: Five-Year Field Monitoring and Numerical Analysis. Int. J. Fatigue 2019, 127, 431–444. [Google Scholar] [CrossRef]
- Shen, C.; Deng, X.; Wei, Z.; Dollevoet, R.; Zoeteman, A.; Li, Z. Comparisons between Beam and Continuum Models for Modelling Wheel-Rail Impact at a Singular Rail Surface Defect. Int. J. Mech. Sci. 2021, 198, 106400. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, P.; Wen, Z. On the Coupling of the Vertical, Lateral and Longitudinal Wheel-Rail Interactions at High Frequencies and the Resulting Irregular Wear. Wear 2019, 430–431, 317–326. [Google Scholar] [CrossRef]
- Yang, Z.; Deng, X.; Li, Z. Numerical Modeling of Dynamic Frictional Rolling Contact with an Explicit Finite Element Method. Tribol. Int. 2019, 129, 214–231. [Google Scholar] [CrossRef]
- Hallquist, J.O. LS-DYNA Theory Manual. Livermore Softw. Technol. Corp. 2006, 3, 25–31. [Google Scholar]
- Hamilton, G.M.; Goodman, L.E. The Stress Field Created by a Circular Sliding Contact. J. Appl. Mech. 1966, 33, 371–376. [Google Scholar] [CrossRef]
- Molero, G.; Du, S.; Mamak, M.; Agerton, M.; Hossain, M.M.; Sue, H.-J. Experimental and Numerical Determination of Adhesive Strength in Semi-Rigid Multi-Layer Polymeric Systems. Polym. Test. 2019, 75, 85–92. [Google Scholar] [CrossRef]
- Carroll, R.I.; Beynon, J.H. Rolling Contact Fatigue of White Etching Layer Part 2. Numerical Results. Wear 2007, 262, 1267–1273. [Google Scholar] [CrossRef]
- Kato, T.; Sugeta, A.; Nakayama, E. Investigation of Influence of White Layer Geometry on Spalling Property in Railway Wheel Steel. Wear 2011, 271, 400–407. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Ding, W.; Wang, P. Assessing the Fast Non-Hertzian Methods for Wheel-Rail Rolling Contact Integrated in the Vehicle Dynamics Simulation. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2023, 237, 371–384. [Google Scholar] [CrossRef]
- Liu, B.; Bruni, S. Application of the Extended FASTSIM for Non-Hertzian Contacts towards the Prediction of Wear and Rolling Contact Fatigue of Wheel/Rail Systems. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2023, 1–10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Deng, X.; Ni, Y.-Q.; Sun, L. Numerical Investigation of Elastic Layer Effects in Wheel–Rail Rolling Contact. Lubricants 2023, 11, 415. https://doi.org/10.3390/lubricants11100415
Yan Z, Deng X, Ni Y-Q, Sun L. Numerical Investigation of Elastic Layer Effects in Wheel–Rail Rolling Contact. Lubricants. 2023; 11(10):415. https://doi.org/10.3390/lubricants11100415
Chicago/Turabian StyleYan, Ziquan, Xiangyun Deng, Yi-Qing Ni, and Linlin Sun. 2023. "Numerical Investigation of Elastic Layer Effects in Wheel–Rail Rolling Contact" Lubricants 11, no. 10: 415. https://doi.org/10.3390/lubricants11100415
APA StyleYan, Z., Deng, X., Ni, Y. -Q., & Sun, L. (2023). Numerical Investigation of Elastic Layer Effects in Wheel–Rail Rolling Contact. Lubricants, 11(10), 415. https://doi.org/10.3390/lubricants11100415