High-Temperature Friction and Wear Behavior of Nickel-Alloy Matrix Composites with the Addition of Molybdate
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
2.2. Tribological Performance Tests
2.3. Characterization
3. Results and Discussion
3.1. Friction and Wear Performance Test
3.2. Worn Surface Analysis
4. Conclusions
- (1)
- Due to the lack of a low-temperature solid lubricant, all three composites showed poor lubricating performance at low testing temperatures. As the temperature increased to 600 °C/800 °C, the in-situ-formed oxidative lubricating layer on the worn surface resulted in relatively low COFs and wear rates.
- (2)
- The NB composite presents a relatively low wear rate of (1.75–4.59) × 10−4 mm3/N−1m−1 from 25 to 800 °C. NAB composites show the best lubricating properties from 400 °C to 800 °C, and the COFs and wear rates are approximately 0.34–0.5 and (0.47–1.25) × 10−4 mm3/N−1m−1.
- (3)
- From 600 to 800 °C, the composites exhibit low friction and wear rates in comparison to their performance at lower temperatures. From 25 to 400 °C, during the sliding process, most of the lubricating film that formed on the sliding surface is removed, thus resulting in a relatively high COF and wear rate; the primary wear mechanisms under these conditions are severe abrasive and fatigue wear. Within the temperature range of 600 to 800 °C, the observed reduction in COF and wear rate may be attributed to the synergistic lubricating action of Ag2MoO4, BaMoO4, and the in-situ-formed oxide. Thus, slightly abrasive wear is the dominant wear mechanism.
- (4)
- It has been reported that the friction and wear behavior of counterpart materials are quite dependent on the transfer film, especially the increased thickness with sliding time. As a further investigation, we plan to study the thickness variation of the transfer film formed on the counterpart materials and its wear performance for the nickel-alloy matrix composite. The results of this project will provide theoretical guidance and technical support for the design and preparation of high-performance anti-wear materials, which are used in aerospace, nuclear powder, high-end equipment, and other sports power systems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- John, M.; Menezes, P.L. Self-lubricating materials for extreme condition applications. Materials 2021, 14, 5588. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Cheng, J.; Qiao, Z.; Yang, J. High temperature solid-lubricating materials: A review. Tribol. Int. 2019, 133, 206–233. [Google Scholar] [CrossRef]
- Ouyang, J.; Li, Y.; Zhang, Y.; Wang, Y.; Wang, Y. High-temperature solid lubricants and self-lubricating composites: A critical review. Lubricants 2022, 10, 177. [Google Scholar] [CrossRef]
- Sliney, H.E. Solid lubricant materials for high temperatures—A review. Tribol. Int. 1982, 15, 303–315. [Google Scholar] [CrossRef]
- Muratore, C.; Voevodin, A.A. Chameleon coatings: Adaptive surfaces to reduce friction and wear in extreme environments. Annu. Rev. Mater. Res. 2009, 39, 297–324. [Google Scholar] [CrossRef]
- Zhen, J.; Han, Y.; Cheng, J.; Chen, W.; Yang, J.; Jia, Z.; Zhang, R. Enhancing the wide temperature dry sliding tribological performance of nickle-alloy by adding MoS2/CaF2. Tribol. Int. 2022, 165, 107254. [Google Scholar] [CrossRef]
- Kostadinov, G.; Penyashki, T.; Elenov, B.; Danailov, P.; Dimitrova, R.; Kandeva, M.; Kamburov, V.; Nikolov, A. Surface topography and roughness parameters of electrospark coatings on titanium and nickel alloys. Appl. Eng. Lett. 2021, 6, 89–98. [Google Scholar] [CrossRef]
- Bulei, C.; Stojanovic, B.; Utu, D. Developments of discontinuously reinforced aluminium matrix composites: Solving the needs for the matrix. J. Phys. Conf. Ser. 2022, 2212, 012029. [Google Scholar] [CrossRef]
- Kong, X.; Sun, W.; Wang, Q.; Chen, M.; Zhang, T.; Wang, F. Improving high-temperature wear resistance of NiCr matrix self-lubricating composites by controlling oxidation and surface texturing. J. Mater. Sci. Technol. 2022, 131, 253–263. [Google Scholar] [CrossRef]
- Kumar, R.; Antonov, M. Self-lubricating materials for extreme temperature tribo-applications. Mater. Today Proc. 2020, 44, 4583–4589. [Google Scholar] [CrossRef]
- Zhu, S.; Bi, Q.; Yang, J.; Liu, W. Effect of fluoride content on friction and wear performance of Ni3Al matrix high-temperature self-lubricating composites. Tribol. Lett. 2011, 43, 341–349. [Google Scholar] [CrossRef]
- Zhu, S.; Bi, Q.; Yang, J.; Liu, W.; Xue, Q. Effect of particle size on tribological behavior of Ni3Al matrix high temperature self-lubricating composites. Tribol. Int. 2011, 44, 1800–1809. [Google Scholar] [CrossRef]
- Zhu, S.; Bi, Q.; Yang, J.; Liu, W.; Xue, Q. Ni3Al matrix high temperature self-lubricating composites. Tribol. Int. 2011, 44, 445–453. [Google Scholar] [CrossRef]
- Zhu, S.; Bi, Q.; Niu, M.; Yang, J.; Liu, W. Tribological behavior of NiAl matrix composites with addition of oxides at high temperatures. Wear 2012, 274–275, 423–434. [Google Scholar] [CrossRef]
- Shi, X.; Wang, M.; Zhai, W.; Xu, Z.; Zhang, Q.; Chen, Y. Influence of Ti3SiC2 content on tribological properties of NiAl matrix self-lubricating composites. Mater. Des. 2013, 45, 179–189. [Google Scholar] [CrossRef]
- Shi, X.; Song, S.; Zhai, W.; Wang, M.; Xu, Z.; Yao, J.; ud Din, A.Q.; Zhang, Q. Tribological behavior of Ni3Al matrix self-lubricating composites containing WS2, Ag and hBN tested from room temperature to 800 °C. Mater. Des. 2014, 55, 75–84. [Google Scholar] [CrossRef]
- Shi, X.; Zhai, W.; Wang, M.; Xu, Z.; Yao, J.; Song, S.; Wang, Y. Tribological behaviors of NiAl based self-lubricating composites containing different solid lubricants at elevated temperatures. Wear 2014, 310, 1–11. [Google Scholar] [CrossRef]
- Kumar, R.; Antonov, M.; Varga, M.; Hussainova, I.; Ripoll, M.R. Synergistic effect of Ag and MoS2 on high-temperature tribology of self-lubricating NiCrBSi composite coatings by laser metal deposition. Wear 2023, 532–533, 205114. [Google Scholar] [CrossRef]
- Sun, J.; Liu, C.; Venturi, F.; Romero, A.R.; Hussain, T. Dry sliding wear behaviour of suspension HVOF thermal sprayed Al2O3-MoS2 and Al2O3-BN nanotube coatings. J. Alloys Compd. 2023, 966, 171582. [Google Scholar] [CrossRef]
- Li, R.; Zhao, X.; Bu, Z.; An, Y.; Zhou, H.; Duan, W.; Chen, J. Influence of different introduction modes of metal Ag into plasma sprayed Al2O3 coating on tribological properties. Ceram. Int. 2022, 48, 9286–9296. [Google Scholar] [CrossRef]
- Kong, L.; Bi, Q.; Zhu, S.; Yang, J.; Liu, W. Tribological properties of ZrO2 (Y2O3)–Mo–BaF2/CaF2 composites at high temperatures. Tribol. Int. 2012, 45, 43–49. [Google Scholar] [CrossRef]
- Kong, L.; Zhu, S.; Bi, Q.; Qiao, Z.; Yang, J.; Liu, W. Friction and wear behavior of self-lubricating ZrO2(Y2O3)-CaF2-Mo-graphite composite from 20 °C to 1000 °C. Ceram. Int. 2014, 40, 10787–10792. [Google Scholar] [CrossRef]
- Kong, L.; Zhu, S.; Qiao, Z.; Yang, J.; Bi, Q.; Liu, W. Effect of Mo and Ag on the friction and wear behavior of ZrO2 (Y2O3)–Ag–CaF2–Mo composites from 20 °C to 1000 °C. Tribol. Int. 2014, 78, 7–13. [Google Scholar] [CrossRef]
- Gao, H.; Otero-de-la-Roza, A.; Gu, J.; Stone, D.; Aouadi, S.M.; Johnson, E.R.; Martini, A. (Ag,Cu)-Ta-O ternaries as high-temperature solid-lubricant coatings. ACS Appl. Mater. Interfaces 2015, 7, 15422–15429. [Google Scholar] [CrossRef]
- Stone, D.; Migas, J.; Martini, A.; Smith, T.; Muratore, C.; Voevodin, A.; Aouadi, S. Adaptive NbN/Ag coatings for high temperature tribological applications. Surf. Coat. Technol. 2012, 206, 4316–4321. [Google Scholar] [CrossRef]
- Roy, A.; Patel, P.; Sharifi, N.; Chromik, R.; Stoyanov, P.; Moreau, C. Binary and ternary lubricious oxides for high temperature tribological applications: A review. Results Surf. Interfaces 2023, 11, 100117. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Muratore, C.; Aouadi, S.M. Hard coatings with high temperature adaptive lubrication and contact thermal management: Review. Surf. Coat. Technol. 2014, 257, 247–265. [Google Scholar] [CrossRef]
- Wang, D.; Tan, H.; Chen, W.; Zhu, S.; Cheng, J.; Yang, J. Tribological behavior of Ni3Al–Ag based self-lubricating alloy with Ag2MoO4 formed by high temperature tribo-chemical reaction. Tribol. Int. 2021, 153, 106659. [Google Scholar] [CrossRef]
- Shi, P.; Yi, G.; Wan, S.; Sun, H.; Feng, X.; Pham, S.T.; Tieu, K.A.; Xie, E.; Wang, Q. High temperature tribological performance of nickel-based composite coatings by incorporating multiple oxides (TiO2–ZnO–MoO3). Tribol. Int. 2020, 155, 106759. [Google Scholar] [CrossRef]
- Su, W.; Zhang, J.; Zhang, J.; Zhou, K.; Niu, S.; Liu, M.; Dai, H.; Deng, C. Microstructure of HVOF-sprayed Ag–BaF2⋅CaF2–Cr3C2–NiCr coating and its tribological behavior in a wide temperature range (25 °C to 800 °C). Ceram. Int. 2021, 47, 865–876. [Google Scholar] [CrossRef]
- Yang, J.; Jia, J.; Li, X.; Lu, C.; Feng, X. Synergistic lubrication of Ag and Ag2MoO4 nanoparticles anchored in plasma-sprayed YSZ coatings: Remarkably-durable lubricating performance at 800 °C. Tribol. Int. 2021, 153, 106670. [Google Scholar] [CrossRef]
- Zhen, J.; Cheng, J.; Li, M.; Zhu, S.; Long, Z.; Yang, B.; Yang, J. Lubricating behavior of adaptive nickel alloy matrix composites with multiple solid lubricants from 25 °C to 700 °C. Tribol. Int. 2017, 109, 174–181. [Google Scholar] [CrossRef]
- Zhen, J.; Zhu, S.; Cheng, J.; Li, M.; Lu, Y.; Qiao, Z.; Yang, J. Influence of graphite content on the dry sliding behavior of nickel alloy matrix solid lubricant composites. Tribol. Int. 2017, 114, 322–328. [Google Scholar] [CrossRef]
- Li, F.; Cheng, J.; Qiao, Z.; Ma, J.; Zhu, S.; Fu, L.; Yang, J.; Liu, W. A Nickel-Alloy-Based High-Temperature Self-Lubricating Composite with Simultaneously Superior Lubricity and High Strength. Tribol. Lett. 2013, 49, 573–577. [Google Scholar] [CrossRef]
- Cheng, J.; Li, F.; Zhu, S.; Hao, J.; Yang, J.; Li, W.; Liu, W. High temperature tribological properties of a nickel-alloy-based solid-lubricating composite: Effect of surface tribo-chemistry, counterpart and mechanical properties. Wear 2017, 386–387, 39–48. [Google Scholar] [CrossRef]
- Yao, Q.; Jia, J.; Chen, T.; Xin, H.; Shi, Y.; He, N.; Feng, X.; Shi, P.; Lu, C. High temperature tribological behaviors and wear mechanisms of NiAl-MoO3/CuO composite coatings. Surf. Coat. Technol. 2020, 395, 125910. [Google Scholar] [CrossRef]
- Aouadi, S.M.; Paudel, Y.; Simonson, W.J.; Ge, Q.; Kohli, P.; Muratore, C.; Voevodin, A.A. Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content. Surf. Coat. Technol. 2009, 203, 1304–1309. [Google Scholar] [CrossRef]
- Zhen, J.; Li, F.; Zhu, S.; Ma, J.; Qiao, Z.; Liu, W.; Yang, J. Friction and wear behavior of nickel-alloy-based high temperature self-lubricating composites against Si3N4 and Inconel 718. Tribol. Int. 2014, 75, 1–9. [Google Scholar] [CrossRef]
- Lopes, F.; Noleto, L.; Vieira, V.; de Sousa, P.; Jucá, A.; Oliveira, Y.; Costa, K.; Almeida, M.; Gouveia, A.; Cavalcante, L. Experimental and theoretical correlation of modulated architectures of β-Ag2MoO4 microcrystals: Effect of different synthesis routes on the morphology, optical, colorimetric, and photocatalytic properties. J. Inorg. Organomet. Polym. Mater. 2023, 33, 424–450. [Google Scholar] [CrossRef]
- Kumar, J.; Karthik, R.; Chen, S.; Muthuraj, V.; Karuppiah, C. Fabrication of potato-like silver molybdate microstructures for photocatalytic degradation of chronic toxicity ciprofloxacin and highly selective electrochemical detection of H2O2. Sci. Rep. 2016, 6, 34149. [Google Scholar] [CrossRef]
- Jena, P.; Nallamuthu, N.; Hari Prasad, K.; Venkateswarlu, M.; Satyanarayana, N. Structural characterization and electrical conductivity studies of BaMoO4 nanofibers prepared by sol–gel and electrospinning techniques. J. Sol-Gel Sci. Technol. 2014, 72, 480–489. [Google Scholar] [CrossRef]
Composites | NiCrMoTiAl | Silver Molybdate | Barium Molybdate |
---|---|---|---|
NA | 90 | 10 | |
NB | 90 | 10 | |
NAB | 80 | 10 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhen, J.; Zhen, C.; Han, Y.; Yuan, L.; Yang, L.; Yang, T.; Guo, S. High-Temperature Friction and Wear Behavior of Nickel-Alloy Matrix Composites with the Addition of Molybdate. Lubricants 2023, 11, 516. https://doi.org/10.3390/lubricants11120516
Zhen J, Zhen C, Han Y, Yuan L, Yang L, Yang T, Guo S. High-Temperature Friction and Wear Behavior of Nickel-Alloy Matrix Composites with the Addition of Molybdate. Lubricants. 2023; 11(12):516. https://doi.org/10.3390/lubricants11120516
Chicago/Turabian StyleZhen, Jinming, Congcong Zhen, Yunxiang Han, Lin Yuan, Liwei Yang, Tianqi Yang, and Shuo Guo. 2023. "High-Temperature Friction and Wear Behavior of Nickel-Alloy Matrix Composites with the Addition of Molybdate" Lubricants 11, no. 12: 516. https://doi.org/10.3390/lubricants11120516
APA StyleZhen, J., Zhen, C., Han, Y., Yuan, L., Yang, L., Yang, T., & Guo, S. (2023). High-Temperature Friction and Wear Behavior of Nickel-Alloy Matrix Composites with the Addition of Molybdate. Lubricants, 11(12), 516. https://doi.org/10.3390/lubricants11120516