Preparation and Tribological Behavior of Nitrogen-Doped Willow Catkins/MoS2 Nanocomposites as Lubricant Additives in Liquid Paraffin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation
2.2. Characterization
3. Results and Discussion
3.1. Results
3.2. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumari, S.; Chouhan, A.; Konathala, L.S.K.; Sharma, O.P.; Ray, S.S.; Ray, A.; Khatri, O.P. Chemically functionalized 2D/2D hexagonal boron nitride/molybdenum disulfide heterostructure for enhancement of lubrication properties. Appl. Surf. Sci. 2022, 579, 152157. [Google Scholar] [CrossRef]
- Zhang, W.; Demydov, D.; Jahan, M.P.; Mistry, K.; Erdemir, A.; Malshe, A.P. Fundamental understanding of the tribological and thermal behavior of Ag-MoS2 nanoparticle-based multi-component lubricating system. Wear 2012, 288, 9–16. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Y.; Song, J.; Hu, L. Novel approach to the fabrication of an alumina-MoS2 self-lubricating composite via the in situ synthesis of nanosized MoS2. ACS Appl. Mater Interfaces 2017, 9, 30263–30266. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Jin, K.; Wang, T.; Zhang, Z.; Zheng, L.; Umehara, N. Metal matrix nanocomposites in tribology: Manufacturing, performance, and mechanisms. Friction 2022, 10, 1596–1634. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419. [Google Scholar] [CrossRef]
- Gong, K.; Lou, W.; Zhao, G.; Wu, X.; Wang, X. MoS2 nanoparticles grown on carbon nanomaterials for lubricating oil additives. Friction 2021, 9, 747–757. [Google Scholar] [CrossRef]
- Qiu, S.; Hu, Y.; Shi, Y.; Hou, Y.; Kan, Y.; Chu, F.; Sheng, H.; Yuen, R.K.; Xing, W. In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Compos. Part A Appl. Sci. Manuf. 2018, 114, 407–417. [Google Scholar] [CrossRef]
- He, J.; Sun, J.; Choi, J.; Wang, C.; Su, D. Synthesis of N-doped carbon quantum dots as lubricant additive to enhance the tribological behavior of MoS2 nanofluid. Friction 2023, 11, 441–459. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, Y.; Geng, J.; Peng, Y.; Olson, D.; Hu, X. Tribological behavior of Fe3O4/MoS2 nanocomposites additives in aqueous and oil phase media. Tribol. Int. 2016, 102, 79–87. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, N.; Lei, S.; Yan, R.; Tian, X.; Wang, J.; Song, Y.; Xu, D.; Guo, Q.; Liu, L. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim. Acta 2015, 166, 1–11. [Google Scholar] [CrossRef]
- Zhang, S.; Zang, L.; Dou, T.; Zou, J.; Zhang, Y.; Sun, L. Willow catkins-derived porous carbon membrane with hydrophilic property for efficient solar steam generation. ACS Omega 2020, 5, 2878–2885. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhou, J.; Wu, S.; Wang, H.; Yang, W. Green synthesis of capacitive carbon derived from platanus catkins with high energy density. J. Mater. Sci. Mater. Electron. 2019, 30, 4184–4195. [Google Scholar] [CrossRef]
- Yan, Y.; Fan, C.; Yang, Y.; Xie, Y.; Cao, Y.; Lin, J.; Zou, Y.; You, C.; Xu, Y.; Yang, R. Effects of structural feature of biomass raw materials on carbon products as matrix in cathode of Li-S battery and its electrochemical performance. Ionics 2020, 26, 6035–6047. [Google Scholar] [CrossRef]
- Tong, M.; Cao, B.; Li, Y.; Chen, L.; Fu, Y. Biomass carbon combined antimony sulfide with various contents as anodes with improved cycle stability in the sodium ion batteries. J. Alloys Compd. 2023, 936, 168270. [Google Scholar] [CrossRef]
- Gouda, M.S.; Shehab, M.; Helmy, S.; Soliman, M.; Salama, R.S. Nickel and cobalt oxides supported on activated carbon derived from willow catkin for efficient supercapacitor electrode. J Energy Storage 2023, 61, 106806. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, L.; Qiu, M.; Zhang, N. Amorphous Se restrained by biomass-derived defective carbon for stable Na-Se batteries. ACS Appl. Energy Mater. 2021, 4, 7219–7225. [Google Scholar] [CrossRef]
- Song, L.; Chang, J.; Ma, Y.; Jiang, W.; Xu, Y.; Liang, C.; Chen, Z.; Zhang, Y. Biomass-derived nitrogen and sulfur co-doped carbon microtubes for the oxygen reduction reaction. Mater. Chem. Front. 2020, 4, 3251–3257. [Google Scholar] [CrossRef]
- Zang, C.; Yang, M.; Liu, E.; Qian, Q.; Zhao, J.; Zhen, J.; Zhang, R.; Jia, Z.; Han, W. Synthesis, characterization and tribological behaviors of hexagonal boron nitride/copper nanocomposites as lubricant additives. Tribol. Int. 2022, 165, 107312. [Google Scholar] [CrossRef]
- Li, W.; Yan, Z.; Shen, D.; Zhang, Z.; Yang, R. Microstructures and tribological properties of MoS2 overlayers on MAO Al alloy. Tribol. Int. 2023, 1181, 108348. [Google Scholar] [CrossRef]
- Sarwar, S.; Karamat, S.; Bhatti, A.S.; Aydinol, M.K.; Oral, A.; Hassan, M.U. Synthesis of graphene-MoS2 composite based anode from oxides and their electrochemical behavior. Chem. Phys. Lett. 2021, 781, 138969. [Google Scholar] [CrossRef]
- Shen, P.; Yang, X.; Du, M.; Zhang, H. Temperature and laser-power dependent Raman spectra of MoS2/RGO hybrid and few-layered MoS2. Phys. B Condens. Matter 2021, 604, 412693. [Google Scholar] [CrossRef]
- Xuan, D.; Zhou, Y.; Nie, W.; Chen, P. Sodium alginate-assisted exfoliation of MoS2 and its reinforcement in polymer nanocomposites. Carbohydr. Polym. 2017, 155, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Mall, V.K.; Ojha, R.P.; Tiwari, P.; Prakash, R. Immunosuppressive drug sensor based on MoS2-polycarboxyindole modified electrodes. Results Chem. 2022, 4, 100345. [Google Scholar] [CrossRef]
- Hirayama, S.; Kurokawa, T.; Gong, J.P. Non-linear rheological study of hydrogel sliding friction in water and concentrated hyaluronan solution. Tribol. Int. 2020, 147, 106270. [Google Scholar] [CrossRef]
- Sharma, A.K.; Katiyar, J.K.; Bhaumik, S.; Roy, S. Influence of alumina/MWCNT hybrid nanoparticle additives on tribological properties of lubricants in turning operations. Friction 2019, 7, 153–168. [Google Scholar] [CrossRef]
- Mousavi, S.B.; Heris, S.Z.; Estellé, P. experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Sci. Rep. 2020, 10, 5813. [Google Scholar] [CrossRef]
- Guimarey, M.J.; Viesca, J.L.; Abdelkader, A.M.; Thomas, B.; Battez, A.H.; Hadfield, M. Electrochemically exfoliated graphene and molybdenum disulfide nanoplatelets as lubricant additives. J. Mol. Liq. 2021, 342, 116959. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Z.; Hu, Y.; Yi, M. PEG-assisted solvothermal synthesis of MoS2 nanosheets with enhanced tribological property. Lubr. Sci. 2020, 32, 273–282. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Z.; Huang, P. Fabrication of coral-like MoS2 and its application in improving the tribological performance of liquid paraffin. Tribol. Int. 2016, 104, 303–308. [Google Scholar] [CrossRef]
- Wu, X.; Gong, K.; Zhao, G.; Lou, W.; Wang, X.; Liu, W. Surface modification of MoS2 nanosheets as effective lubricant additives for reducing friction and wear in poly-α-olefin. Ind. Eng. Chem. Res. 2018, 57, 8105–8114. [Google Scholar] [CrossRef]
- Kathiravan, D.; Huang, B.R.; Saravanan, A.; Prasannan, A.; Hong, P.D. Highly enhanced hydrogen sensing properties of sericin-induced exfoliated MoS2 nanosheets at room temperature. Sens. Actuators B Chem. 2019, 279, 138–147. [Google Scholar] [CrossRef]
- Garcia, I.; Galipaud, J.; Kosta, I.; Grande, H.; Garcia-Lecina, E.; Dassenoy, F. Influence of the organic moiety on the tribological properties of MoS2: Glycol hybrid nanoparticles-based dispersions. Tribol. Int. 2020, 68, 104. [Google Scholar] [CrossRef]
- Xu, W.; Fu, C.; Hu, Y.; Chen, J.; Yang, Y.; Yi, M. Synthesis of hollow core-shell MoS2 nanoparticles with enhanced lubrication performance as oil additives. Bull. Mater. Sci. 2021, 44, 88. [Google Scholar] [CrossRef]
- Chen, T.; Xia, Y.; Jia, Z.; Liu, Z.; Zhang, H. Synthesis, characterization, and tribological behavior of oleic acid capped graphene oxide. J. Nanomater. 2014, 2014, 654145. [Google Scholar] [CrossRef]
- Pal, K.; Majumder, T.P.; Schirhagl, R.; Ghosh, S.; Roy, S.K.; Dabrowski, R. Efficient one-step novel synthesis of ZnO nanospikes to nanoflakes doped OAFLCs (W-182) host: Optical and dielectric response. Appl. Surf. Sci. 2013, 280, 405–417. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, S.; Wang, C.; Ma, Y.; He, L.; Liu, B.; Zhang, Z. Catkin-derived mesoporous carbon-supported molybdenum disulfide and nickel hydroxyl oxide hybrid as a bifunctional electrocatalyst for driving overall water splitting. J. Colloid Interface Sci. 2022, 608, 1627–1637. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Liu, T.; Zheng, Z.; Liu, Q.; Wang, Y.; Qin, Z.; Guo, H.; Liang, Y. Alcohols assisted in-situ growth of MoS2 membrane on tubular ceramic substrate for nanofiltration. J. Membr. Sci. 2022, 659, 120777. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Y.; Liu, E.; Ren, B.; Liu, L.; Liu, Z.; Zhu, B.; Wang, X.; Jia, Z.; Han, W.; Bai, Y. Preparation and Tribological Behavior of Nitrogen-Doped Willow Catkins/MoS2 Nanocomposites as Lubricant Additives in Liquid Paraffin. Lubricants 2023, 11, 524. https://doi.org/10.3390/lubricants11120524
Xing Y, Liu E, Ren B, Liu L, Liu Z, Zhu B, Wang X, Jia Z, Han W, Bai Y. Preparation and Tribological Behavior of Nitrogen-Doped Willow Catkins/MoS2 Nanocomposites as Lubricant Additives in Liquid Paraffin. Lubricants. 2023; 11(12):524. https://doi.org/10.3390/lubricants11120524
Chicago/Turabian StyleXing, Yaping, Ebo Liu, Bailin Ren, Lisha Liu, Zhiguo Liu, Bocheng Zhu, Xiaotian Wang, Zhengfeng Jia, Weifang Han, and Yungang Bai. 2023. "Preparation and Tribological Behavior of Nitrogen-Doped Willow Catkins/MoS2 Nanocomposites as Lubricant Additives in Liquid Paraffin" Lubricants 11, no. 12: 524. https://doi.org/10.3390/lubricants11120524
APA StyleXing, Y., Liu, E., Ren, B., Liu, L., Liu, Z., Zhu, B., Wang, X., Jia, Z., Han, W., & Bai, Y. (2023). Preparation and Tribological Behavior of Nitrogen-Doped Willow Catkins/MoS2 Nanocomposites as Lubricant Additives in Liquid Paraffin. Lubricants, 11(12), 524. https://doi.org/10.3390/lubricants11120524