Study of Effect of Nickel Content on Tribocorrosion Behaviour of Nickel–Aluminium–Bronzes (NABs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tribocorrosion Test and Wear Determination
3. Results and Analysis
3.1. Microstructure and Microhardness Characterization
3.2. Tribocorrosion Test
3.3. Synergic Study of Corrosion and Friction
3.4. Wear Evaluation
3.5. Corrosion–Friction Products Characterization by XRD
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, R.J.K. Marine wear and tribocorrosion. Wear 2017, 376–377, 893–910. [Google Scholar] [CrossRef]
- Alves, A.C.; Oliveira, F.; Wenger, F.; Ponthiaux, P.; Celis, J.-P.; Rocha, L.A. Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants. J. Phys. D Appl. Phys. 2013, 46, 404001. [Google Scholar] [CrossRef]
- Correa, D.; Kuroda, P.; Grandini, C.; Rocha, L.; Oliveira, F.; Alves, A.; Toptan, F. Tribocorrosion behavior of β-type Ti-15Zr-based alloys. Mater. Lett. 2016, 179, 118–121. [Google Scholar] [CrossRef] [Green Version]
- Hacisalihoglu, I.; Samancioglu, A.; Yildiz, F.; Purcek, G.; Alsaran, A. Tribocorrosion properties of different type titanium alloys in simulated body fluid. Wear 2015, 332–333, 679–686. [Google Scholar] [CrossRef]
- Sadiq, K.; Black, R.A.; Stack, M.M. Bio-tribocorrosion mechanisms in orthopaedic devices: Mapping the micro-abrasion-corrosion behaviour of a simulated CoCrMo hip replacement in calf serum solution. Wear 2014, 316, 58–69. [Google Scholar] [CrossRef] [Green Version]
- da Silva, F.L.; Antonini, L.M.; Vega, M.R.O.; Aguzzoli, C.; de Fraga Malfatti, C. A New Ternary Alloy Ti26Zr24Nb for Biomedical Application: Behavior in Corrosion, Wear, and Tribocorrosion. J. Bio-Tribo-Corrosion 2020, 6. [Google Scholar] [CrossRef]
- Radice, S.; Neto, M.Q.; Fischer, A.; Wimmer, M.A. Nickel-free high-nitrogen austenitic steel outperforms CoCrMo Alloy regarding tribocorrosion in simulated inflammatory synovial fluids. J. Orthop. Res. 2022, 40, 1397–1408. [Google Scholar] [CrossRef]
- Mace, A.; Gilbert, J.L. Micro-asperity tribocorrosion of CoCrMo, Ti6Al4V, and 316 stainless steel in air and physiological solution: Small scale reciprocal sliding of a single diamond tip. Wear 2022, 498–499. [Google Scholar] [CrossRef]
- Zhang, J.-Q.; Cao, S.; Liu, Y.; Bao, M.-M.; Ren, J.; Li, S.-Y.; Zhang, E.-L.; Wang, J.-J. Tribocorrosion behavior of antibacterial Ti–Cu sintered alloys in simulated biological environments. Rare Met. 2022, 41, 1921–1932. [Google Scholar] [CrossRef]
- Jiang, J.; Stack, M.; Neville, A. Modelling the tribo-corrosion interaction in aqueous sliding conditions. Tribol. Int. 2022, 35, 669–679. [Google Scholar] [CrossRef]
- Landolt, D. Electrochemical and materials aspects of tribocorrosion systems. J. Phys. D Appl. Phys. 2006, 39, 3121. [Google Scholar] [CrossRef]
- Huttunen-Saarivirta, E.; Isotahdon, E.; Metsäjoki, J.; Salminen, T.; Ronkainen, H.; Carpén, L. Behaviour of leaded tin bronze in simulated seawater in the absence and presence of tribological contact with alumina counterbody: Corrosion, wear and tribocorrosion. Tribol. Int. 2019, 129, 257–271. [Google Scholar] [CrossRef]
- Ren, P.; Meng, H.; Xia, Q.; Cui, A.; Zhu, Z.; He, M. Study on the tribocorrosion behavior of Cu–Ni–Zn alloy in deep-sea environment by in-situ electrochemical method. Wear 2023, 514–515, 204594. [Google Scholar] [CrossRef]
- Wharton, J.A.; Barik, R.C.; Kear, G.; Wood, R.J.K.; Stokes, K.R.; Walsh, F.C. The corrosion of nickel-aluminium bronze in seawater. Corros. Sci. 2005, 47, 3336–3367. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, Y.F.; Liu, L.; Lv, W.; Hu, W. Effect of heat treatment on microstructure evolution and erosion-corrosion behavior of a nickel-aluminum bronze Alloy in chloride solution. Corros. Sci. 2015, 98, 260–270. [Google Scholar] [CrossRef]
- Krogstad, H.N.; Johnsen, R. Corrosion properties of nickel-aluminium bronze in natural seawater—Effect of galvanic coupling to UNS S31603. Corros. Sci. 2017, 121, 43–56. [Google Scholar] [CrossRef]
- Bohm, J.; Linhardt, P.; Strobl, S.; Haubner, R.; Biezma, M. Microstructure of a heat treated nickel-aluminum bronze and its corrosion behavior in simulated fresh and sea water. Mater. Perform. Charact. 2016, 5, 689–700. [Google Scholar] [CrossRef]
- Linhardt, P.; Kührer, S.; Ball, G.; Biezma, M.V. Design of a multichannel potentiostat and its application to corrosion testing of a nickel-aluminum bronze. Mater. Corros. 2017, 69, 358–364. [Google Scholar] [CrossRef]
- Schüssler, A.; Exner, H.E. The corrosion of nickel-aluminium bronzes in seawater-I. Protective layer formation and the passivation mechanism. Corros. Sci. 1993, 34, 1793–1802. [Google Scholar] [CrossRef]
- Basumatary, J.; Wood, R. Different methods of measuring synergy between cavitation erosion and corrosion for nickel aluminium bronze in 3.5% NaCl solution. Tribol. Int. 2020, 147, 104843. [Google Scholar] [CrossRef]
- Song, Q. Investigation on the Corrosion and Cavitation Erosion Behaviors of the Cast and Friction Stir Processed Ni-Al Bronze in Sulfide-Containing Chloride Solution. Int. J. Electrochem. Sci. 2017, 12, 10616–10632. [Google Scholar] [CrossRef]
- Ma, J.; Hou, G.; Cao, H.; An, Y.; Zhou, H.; Chen, J.; Duan, W. Why does seawater corrosion significantly inhibit the cavitation erosion damage of nickel-aluminum bronze? Corros. Sci. 2022, 209, 110700. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Yan, F. Load-dependent tribocorrosion behaviour of nickel-aluminium bronze in artificial seawater. Corros. Sci. 2018, 131, 252–263. [Google Scholar] [CrossRef]
- Zhang, B.-B.; Wang, J.-Z.; Yuan, J.-Y.; Yan, F.-Y. Tribocorrosion behavior of nickel aluminum bronze in seawater: Identification of corrosion-wear components and effect of Ph. Mater. Corros. 2017, 69, 106–114. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Yuan, J.; Yan, F. Tribocorrosion behavior of nickel-aluminium bronze sliding against alumina under the lubrication by seawater with different halide concentrations. Friction 2019, 7, 444–456. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, J.; Liu, H.; Yuan, J.; Jiang, P.; Yan, F. Assessing the Tribocorrosion Performance of Nickel–Aluminum Bronze in Different Aqueous Environments. Tribol. Trans. 2019, 62, 314–323. [Google Scholar] [CrossRef]
- Huttunen-Saarivirta, E.; Isotahdon, E.; Metsäjoki, J.; Salminen, T.; Carpén, L.; Ronkainen, H. Tribocorrosion behaviour of aluminium bronze in 3.5 wt.% NaCl solution. Corros. Sci. 2018, 144, 207–223. [Google Scholar] [CrossRef]
- Ji, X.; Zhao, J.; Jin, J.; Wu, J.; Zhu, W. Tribological Behavior of Cu-Based Bulk Metallic Glass Compared to Nickel–Aluminum Bronze in Air and 3.5% Sodium Chloride Solution. J. Tribol. 2023, 145, 041701. [Google Scholar] [CrossRef]
- Yang, F.; Kang, H.; Guo, E.; Li, R.; Chen, Z.; Zeng, Y.; Wang, T. The role of nickel in mechanical performance and corrosion behaviour of nickel-aluminium bronze in 3.5 wt.% NaCl solution. Corros. Sci. 2018, 139, 333–345. [Google Scholar] [CrossRef]
- ASTM G99–17; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- ASTM G119; Standard Guide for Determining Synergism Between Wear and Corrosion. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- Tan, B.; Lan, S.; Zhang, S.; Deng, H.; Qiang, Y.; Fu, A.; Ran, Y.; Xiong, J.; Marzouki, R.; Li, W. Passiflora edulia Sims leaves Extract as renewable and degradable inhibitor for copper in sulfuric acid solution. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 645, 128892. [Google Scholar] [CrossRef]
- Tan, B.; Lan, S.; Zhang, S.; Deng, H.; Qiang, Y.; Fu, A.; Ran, Y.; Xiong, J.; Marzouki, R.; Li, W. Insight into the anti-corrosion performance of two food flavors as eco-friendly and ultra-high performance inhibitors for copper in sulfuric acid medium. J. Colloid Interface Sci. 2022, 609, 838–851. [Google Scholar] [CrossRef] [PubMed]
Al | Fe | Ni | Mn | Cu | Density (g/cm3) | |
---|---|---|---|---|---|---|
C95500 | 10.0 | 4.7 | 4.8 | 0.4 | Balance | 7.55 ± 0.02 |
C95400 | 10.1 | 4.1 | 1.0 | 0.8 | Balance | 7.45 ± 0.02 |
Alpha Phase (%) | Βeta Phase (%) | Intermetallic Compounds (%) | Microhardness (HV0.1) | |
---|---|---|---|---|
C95500 | 70.5 | 24.4 | 5.1 | 160 ± 8.2 |
C95400 | 53.8 | 43.0 | 3.2 | 145 ± 6.2 |
T (mm.y−1) | W0 (mm.y−1) | Co (mm.y−1) | Cw (mm.y−1) | S | ΔCw (mm.y−1) | ΔWc (mm.y−1) | |
---|---|---|---|---|---|---|---|
C95500 | 143 | 0.08 | 0.02 | 1.05 | 142.9 | 1.0 | 141.9 |
C95400 | 163 | 0.13 | 0.05 | 1.35 | 162.8 | 1.4 | 161.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berlanga-Labari, C.; Claver, A.; Biezma-Moraleda, M.V.; Palacio, J.F. Study of Effect of Nickel Content on Tribocorrosion Behaviour of Nickel–Aluminium–Bronzes (NABs). Lubricants 2023, 11, 43. https://doi.org/10.3390/lubricants11020043
Berlanga-Labari C, Claver A, Biezma-Moraleda MV, Palacio JF. Study of Effect of Nickel Content on Tribocorrosion Behaviour of Nickel–Aluminium–Bronzes (NABs). Lubricants. 2023; 11(2):43. https://doi.org/10.3390/lubricants11020043
Chicago/Turabian StyleBerlanga-Labari, C., A. Claver, M. V. Biezma-Moraleda, and José F. Palacio. 2023. "Study of Effect of Nickel Content on Tribocorrosion Behaviour of Nickel–Aluminium–Bronzes (NABs)" Lubricants 11, no. 2: 43. https://doi.org/10.3390/lubricants11020043
APA StyleBerlanga-Labari, C., Claver, A., Biezma-Moraleda, M. V., & Palacio, J. F. (2023). Study of Effect of Nickel Content on Tribocorrosion Behaviour of Nickel–Aluminium–Bronzes (NABs). Lubricants, 11(2), 43. https://doi.org/10.3390/lubricants11020043