Effect of Rotational Speed on Tribological Properties of Carbon Fiber-Reinforced Al-Si Alloy Matrix Composites
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Preparation of Composite Materials
2.2. Microstructure Characterization and Physical Properties Test
2.3. Wear Test
3. Results and Discussion
3.1. Microstructure Characteristics
3.2. Physical Properties
3.3. Tribological Properties
3.3.1. COF
3.3.2. Wear Rate
3.3.3. Worn Surface Morphology
4. Conclusions
- (1)
- The brittle phase Al4C3 is not detected in the composites, which is due to the large working pressure provided by the die casting process to accelerate the wetting rate, reduce the contact time between Al melt and CFs at high temperature, and the inhibition effect of Si, Cu, Mg elements in the Al matrix. Moreover, the CFs are uniformly distributed in composites, and form a good wear-reducing and wear-resistant structure with hard-phase Si.
- (2)
- Compared with the Al-Si alloy, the decreases in density of the two composites and the increase in thermal conductivity are attributed to the low density and excellent thermal conductivity of the CF, and the increase in hardness is attributed to the CF restricting the grain growth and restrain the plastic flow behavior of the matrix.
- (3)
- With the increase in rotational speed, the COF of the Al-Si alloy and the two composites first increases and then decreases, which is attributed to the rotational speed affecting the formation of carbon film and the change in surface temperature of the friction pair. The two composites also have lower COF due to the excellent lubrication and thermal conductivity of the CF.
- (4)
- With the increase in rotational speed, the wear mechanisms of the Al-Si alloy and the two Al-Si/CF composites are changed from abrasive wear and adhesive wear to delamination wear. However, the CF can slow down the nucleation of cracks and prevent the propagation of microcracks, the wear mechanism changing to delamination wear of the composite requires higher rotational speeds, and the wear rate of the composite is also lower.
- (5)
- There is little difference in hardness and thermal conductivity of the two composites, but the density and the tribological properties of the Al-Si/CFp composites are lower than those of the Al-Si/CFf composites due to the hollow porous structure of the CFp.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miladinović, S.; Stojanović, B.; Gajević, S.; Vencl, A. Hypereutectic Aluminum Alloys and Composites: A Review. Silicon 2022. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, Y.; Zheng, X.; Zhang, Y.; Chen, L.; Wang, J. Research Progress on Multi-Component Alloying and Heat Treatment of High Strength and Toughness Al–Si–Cu–Mg Cast Aluminum Alloys. Materials 2023, 16, 1065. [Google Scholar] [CrossRef]
- Tan, H.; Wang, S.; Yu, Y.; Cheng, J.; Zhu, S.; Qiao, Z.; Yang, J. Friction and wear properties of Al-20Si-5Fe-2Ni-Graphite solid-lubricating composite at elevated temperatures. Tribol. Int. 2018, 122, 228–235. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Li, C.; Huang, L.; Wang, Y.; Gao, T.; Zhang, Z.; Liu, W. Wear Properties of C-MoS2-PTFE Composite Coating Prepared on 4032 Aluminum Alloy. Lubricants 2022, 10, 181. [Google Scholar] [CrossRef]
- Stojanovic, B.; Bukvic, M.; Epler, I. Application of Aluminum and Aluminum Alloys in Engineering. Appl. Eng. Lett. 2018, 3, 52–62. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Wu, J.; Zhang, X. Mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering. Int. J. Miner. Metall. Mater. 2017, 24, 584–593. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Hamim, S.U.; Karbalaei Akbari, M.; Fakhrhoseini, S.M.; Khayyam, H.; Pakseresht, A.H.; Ghasali, E.; Zabet, M.; Munir, K.S.; Jia, S.; et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Compos. Part A Appl. Sci. Manuf. 2017, 92, 70–96. [Google Scholar] [CrossRef]
- Choi, Y.; Meng, X.; Xu, Z. Manufacturing and Performance of Carbon Short Fiber Reinforced Composite Using Various Aluminum Matrix. J. Compos. Sci. 2021, 5, 307. [Google Scholar] [CrossRef]
- Constantin, H.; Harper, L.; Kennedy, A.R. Pressure-assisted infiltration of molten metals into non-rigid, porous carbon fibre structures. J. Mater. Process. Technol. 2018, 255, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Asano, K.; Zainuddin, M.F.B. Wear Behavior of PAN- and Pitch-Based Carbon Fiber Reinforced Aluminum Alloy Composites under Dry Sliding Condition. Mater. Trans. 2017, 58, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Manu, K.M.S.; Raag, L.A.; Rajan, T.P.D.; Pai, B.C.; Petley, V.; Verma, S.N. Self-lubricating bidirectional carbon fiber reinforced smart aluminum composites by squeeze infiltration process. J. Mater. Sci. Technol. 2019, 35, 2559–2569. [Google Scholar] [CrossRef]
- Jang, J.M.; Ko, S.H.; Lee, W. Effects of SiC Coating of Carbon Fiber on Mechanical Properties in Short Carbon Fiber Reinforced Al Matrix Composite. Arch. Metall. Mater. 2021, 66, 941–946. [Google Scholar]
- Zhu, C.; Su, Y.; Zhang, D.; Ouyang, Q. Effect of Al2O3 coating thickness on microstructural characterization and mechanical properties of continuous carbon fiber reinforced aluminum matrix composites. Mater. Sci. Eng. A 2020, 793, 139839. [Google Scholar] [CrossRef]
- Meng, X.; Choi, Y.B.; Matsugi, K.; Xu, Z.F.; Liu, W.C. Microstructures of Carbon Fiber and Hybrid Carbon Fiber-Carbon Nanofiber Reinforced Aluminum Matrix Composites by Low Pressure Infiltration Process and Their Properties. Mater. Trans. 2018, 59, 1935–1942. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Gao, Y.; Wang, Y.; Lu, X.; Li, Y. Fabrication and characteristic of 2024Al matrix composites reinforced by carbon fibers and ZrCp by spark plasma sintering. J. Alloys Compd. 2021, 889, 161543. [Google Scholar] [CrossRef]
- Zhu, C.; Su, Y.; Wang, X.; Sun, H.; Ouyang, Q.; Zhang, D. Process optimization, microstructure characterization and thermal properties of mesophase pitch-based carbon fiber reinforced aluminum matrix composites fabricated by vacuum hot pressing. Compos. B Eng. 2021, 215, 108746. [Google Scholar] [CrossRef]
- Gao, M.; Gao, P.; Wang, Y.; Lei, T.; Ouyang, C. Study on Metallurgically Prepared Copper-Coated Carbon Fibers Reinforced Aluminum Matrix Composites. Met. Mater. Int. 2021, 27, 5425–5435. [Google Scholar] [CrossRef]
- Kumar, A.; Rana, R.S.; Purohit, R.; Saxena, K.; Xu, J.; Malik, V. Metallographic Study and Sliding Wear Optimization of Nano Si3N4 Reinforced High-Strength Al Metal Matrix Composites. Lubricants 2022, 10, 202. [Google Scholar] [CrossRef]
- Li, G.; Qu, Y.; Yang, Y.; Zhou, Q.; Liu, X.; Li, R. Improved multi-orientation dispersion of short carbon fibers in aluminum matrix composites prepared with square crucible by mechanical stirring. J. Mater. Sci. Technol. 2020, 40, 81–87. [Google Scholar] [CrossRef]
- Sree Manu, K.M.; Ajay Raag, L.; Rajan, T.P.D.; Gupta, M.; Pai, B.C. Liquid Metal Infiltration Processing of Metallic Composites: A Critical Review. Metall. Mater. Trans. B 2016, 47, 2799–2819. [Google Scholar] [CrossRef]
- Sha, J.; Lü, Z.; Sha, R.; Zu, Y.; Dai, J.; Xian, Y.; Zhang, W.; Cui, D.; Yan, C. Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites by squeeze melt infiltration technique. Trans. Nonferr. Metal. Soc. 2021, 31, 317–330. [Google Scholar] [CrossRef]
- Galyshev, S.; Gomzin, A.; Musin, F. Aluminum Matrix Composite Reinforced by Carbon Fibers. Mater. Today Proc. 2019, 11, 281–285. [Google Scholar] [CrossRef]
- Alten, A.; Erzi, E.; Gürsoy, Ö.; Hapçı Ağaoğlu, G.; Dispinar, D.; Orhan, G. Production and mechanical characterization of Ni-coated carbon fibers reinforced Al-6063 alloy matrix composites. J. Alloys Compd. 2019, 787, 543–550. [Google Scholar] [CrossRef]
- Patil, N.A.; Pedapati, S.R.; Marode, R.V. Wear Analysis of Friction Stir Processed AA7075-SiC-Graphite Hybrid Surface Composites. Lubricants 2022, 10, 267. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, J.; Li, S.; Wang, F.; Wu, T. Fabrication and mechanical properties of Cu-coated woven carbon fibers reinforced aluminum alloy composite. Mater. Des. 2014, 57, 442–448. [Google Scholar] [CrossRef]
- Zhong, K.; Zhou, J.; Zhao, C.; Yun, K.; Qi, L. The effect of nickel coating on the mechanical properties and failure modes of continuous carbon fiber reinforced aluminum matrix composites. J. Alloys Compd. 2022, 904, 164134. [Google Scholar] [CrossRef]
- Bedmar, J.; Torres, B.; Rams, J. Manufacturing of Aluminum Matrix Composites Reinforced with Carbon Fiber Fabrics by High Pressure Die Casting. Materials 2022, 15, 3400. [Google Scholar] [CrossRef]
- Eid, M.; Kaytbay, S.; Elkady, O.; El-Assal, A. Microstructure and mechanical properties of CF/Al composites fabricated by hot coining technique. Ceram. Int. 2021, 47, 21890–21904. [Google Scholar] [CrossRef]
- Deng, Y.; Pan, X.; Zeng, G.; Liu, J.; Xiao, S.; Zhou, Z. Study on high-temperature wear and mechanism of Al-Si/graphite composites prepared by the die-casting process. Ind. Lubr. Tribol. 2020, 72, 1153–1158. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Yu, S.; Wang, W. High temperature friction and wear behaviour of Al2O3 and/or carbon short fibre reinforced Al–12Si alloy composites. Wear 2004, 256, 275–285. [Google Scholar]
- Du, J.; Liu, Y.; Yu, S.; Li, W. Dry sliding friction and wear properties of Al2O3 and carbon short fibres reinforced Al–12Si alloy hybrid composites. Wear 2004, 257, 930–940. [Google Scholar]
- Samal, P.; Vundavilli, P.R.; Meher, A.; Mahapatra, M.M. Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties. J. Manuf. Process. 2020, 59, 131–152. [Google Scholar] [CrossRef]
- Stojanović, B.; Ivanović, L. Application of aluminium hybrid composites in automotive industry. Teh. Vjesn. 2015, 22, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Liao, Q.; Yang, Z.; Li, X.; Huang, Z.; Ren, J.; Yang, Y.; Wu, G. Interfacial modification and performance enhancement of carbon matrix/aluminum composites. J. Alloys Compd. 2022, 903, 163877. [Google Scholar] [CrossRef]
- Chen, S.; An, Q.; Shen, P. Influences of Si and Ti on the wettability and reactivity of Al/graphite system at 900 °C. Materialia 2021, 16, 101060. [Google Scholar] [CrossRef]
- Yu, Z.; Tan, Z.; Xu, R.; Ji, G.; Fan, G.; Xiong, D.; Guo, Q.; Li, Z.; Zhang, D. Enhanced load transfer by designing mechanical interfacial bonding in carbon nanotube reinforced aluminum composites. Carbon 2019, 146, 155–161. [Google Scholar] [CrossRef]
- Kaczmar, J.W.; Naplocha, K.; Morgiel, J. Microstructure and Strength of Al2O3 and Carbon Fiber Reinforced 2024 Aluminum Alloy Composites. J. Mater. Eng. Perform. 2014, 23, 2801–2808. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chen, G.; Wang, X.; Zhang, Y.; Yang, W.; Wu, G. Effect of Mg Content on the Thermodynamics of Interface Reaction in Cf/Al Composite. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2012, 43, 2514–2519. [Google Scholar] [CrossRef]
- Eid, M.; Kaytbay, S.; El-Assal, A.; Elkady, O. Electrical, Thermal, and Mechanical Characterization of Hot Coined Carbon Fiber Reinforced Pure Aluminium Composites. Met. Mater. Int. 2022, 28, 2747–2765. [Google Scholar] [CrossRef]
- Miranda, A.T.; Bolzoni, L.; Barekar, N.; Huang, Y.; Shin, J.; Ko, S.; McKay, B.J. Processing, structure and thermal conductivity correlation in carbon fibre reinforced aluminium metal matrix composites. Mater. Des. 2018, 156, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Choi, Y.; Sugio, K.; Sugio, K.; Matsugi, K.; Sasaki, G. Effect of aluminum carbide on thermal conductivity of the unidirectional CF/Al composites fabricated by low pressure infiltration process. Compos. Sci. Technol. 2014, 97, 1–5. [Google Scholar] [CrossRef]
- Xie, W.; Cheng, H.F.; Chu, Z.Y.; Chen, Z.H.; Zhou, Y.J.; Long, C.G. Comparison of Hollow-Porous and Solid Carbon Fibers as Microwave Absorbents. Adv. Mat. Res. 2010, 150, 1336–1342. [Google Scholar] [CrossRef]
- Zeng, X.; Yu, J.; Fu, D.; Zhang, H.; Teng, J. Wear characteristics of hybrid aluminum-matrix composites reinforced with well-dispersed reduced graphene oxide nanosheets and silicon carbide particulates. Vacuum 2018, 155, 364–375. [Google Scholar] [CrossRef]
- Schön, J. Coefficient of friction for aluminum in contact with a carbon fiber epoxy composite. Tribol. Int. 2004, 37, 395–404. [Google Scholar] [CrossRef]
- Cao, X.; Shi, Q.; Liu, D.; Feng, Z.; Liu, Q.; Chen, G. Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: Evaluation of microstructural, mechanical and tribological behaviors. Compos. B Eng. 2018, 139, 97–105. [Google Scholar] [CrossRef]
- Akbarzadeh, E.; Picas, J.A.; Baile, M.T. Orthogonal experimental design applied for wear characterization of aluminum/Csf metal composite fabricated by the thixomixing method. Int. J. Mater. Form. 2016, 9, 601–612. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, C.S.; Adarsha, H.; Pramod, S.; Khan, Z. Tribological characteristics of innovative Al6061–carbon fiber rod metal matrix composites. Mater. Des. 2013, 50, 597–605. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q.; Dong, S.; Yu, Z.; Zhang, Q.; Zhang, P.; Wang, X.; Zhang, B.; Li, X.; Liang, Y.; et al. The effect of carbon fiber strengthening on the mechanical properties and wear resistance of 24CrNiMo alloy steel fabricated by laser deposition. J. Mater. Res. Technol. 2020, 9, 9117–9128. [Google Scholar] [CrossRef]
Material | Density (g/cm3) | Vickers Hardness (HV) | Thermal Conductivity (W/(m·K)) |
---|---|---|---|
Al-Si alloy | 2.62 | 85.04 | 142.92 ± 1.85 |
Al-Si/CFp composite | 2.32 | 86.39 | 178.11 ± 5.53 |
Al-Si/CFf composite | 2.51 | 87.28 | 178.85 ± 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.; Pan, X.; Deng, Y.; Zhou, Z.; Zeng, G.; Xiao, S. Effect of Rotational Speed on Tribological Properties of Carbon Fiber-Reinforced Al-Si Alloy Matrix Composites. Lubricants 2023, 11, 142. https://doi.org/10.3390/lubricants11030142
Tang F, Pan X, Deng Y, Zhou Z, Zeng G, Xiao S. Effect of Rotational Speed on Tribological Properties of Carbon Fiber-Reinforced Al-Si Alloy Matrix Composites. Lubricants. 2023; 11(3):142. https://doi.org/10.3390/lubricants11030142
Chicago/Turabian StyleTang, Feng, Xiaotao Pan, Yafei Deng, Zhenquan Zhou, Guoxun Zeng, and Sinong Xiao. 2023. "Effect of Rotational Speed on Tribological Properties of Carbon Fiber-Reinforced Al-Si Alloy Matrix Composites" Lubricants 11, no. 3: 142. https://doi.org/10.3390/lubricants11030142
APA StyleTang, F., Pan, X., Deng, Y., Zhou, Z., Zeng, G., & Xiao, S. (2023). Effect of Rotational Speed on Tribological Properties of Carbon Fiber-Reinforced Al-Si Alloy Matrix Composites. Lubricants, 11(3), 142. https://doi.org/10.3390/lubricants11030142