The Tribological Performance of Frictional Pair of Gas–Liquid Miscible Backflow Pumping Seal in Oil–Air Environment
Abstract
:1. Introduction
2. Test Procedure
2.1. Seal Structure and Working Principle
2.2. Oil–Air Environment and Friction Tester
2.3. Frictional Pair Materials
2.4. Test Process
3. Tribological Results
3.1. Tribological Properties
3.2. Influence of Spiral Groove on Frictional Properties of Frictional Pairs
3.3. Microscopic Morphology and Wear Mechanism
3.4. Wear of Graphite
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, W.; Hu, C.; Hu, J.; Yuan, S.H.; Zhang, R. Jet cooling characteristics for ball bearings using the VOF multiphase model. Int. J. Therm. Sci. 2017, 116, 150–158. [Google Scholar] [CrossRef]
- Adeniyi, A.A.; Morvan, H.P.; Simmons, K. A computational fluid dynamic simulation of oil-air flow between the cage and inner race of an aero-engine bearing. J. Eng. Gas Turbines Power 2017, 139, 012506. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, S.Y.; Wang, X.S.; Feng, Y.D. Experiment research on oil-air lubrication for high-speed ball bearing. Lubr. Eng. 2006, 181, 114–119. [Google Scholar]
- Pinel, S.I.; Signer, H.R.; Zaretsky, E.V. Comparison between oil-mist and oil-jet lubrication of high-speed, small-bore, angular-contact ball bearings. Tribol. Trans. 2001, 44, 327–338. [Google Scholar] [CrossRef]
- Li, S.C.; Qian, C.F.; Li, S.X.; Li, Q.Z.; Liao, H.R. Study of sealing mechanism of gas-liquid miscible backflow pumping seal. Tribol. Int. 2020, 142, 105974. [Google Scholar] [CrossRef]
- Shankar, S.; Praveenkumar, G.; Kumar, P.K. Frictional study of alumina, 316 stainless steel, phosphor bronze versus carbon as mechanical seals under dry sliding conformal contact. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2015, 229, 1279–1291. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.Y.; Wen, Q.F.; Wang, Y.M. On frictional performance of sintering materials used by mechanical seals in water. Ind. Lubr. Tribol. 2014, 66, 23–30. [Google Scholar] [CrossRef]
- Wang, W.; He, Y.Y.; Zhao, J.; Mao, J.Y.; Hu, Y.T.; Luo, J.B. Optimization of groove texture profile to improve hydrodynamic lubrication performance: Theory and experiments. Friction 2020, 8, 83–94. [Google Scholar] [CrossRef]
- Chen, D.L.; Ding, X.X.; Yu, S.R.; Zhang, W.Z. Friction performance of DLC film textured surface of high pressure dry gas sealing ring. J. Braz. Soc. Mech. Sci. 2019, 41, 161. [Google Scholar] [CrossRef]
- Dong, S.J.; Song, B.; Hansz, B.; Liao, H.L.; Coddet, C. Microstructure and properties of Cr2O3 coating deposited by plasma spraying and dry-ice blasting. Surf. Coat. Technol. 2013, 225, 58–65. [Google Scholar] [CrossRef]
- Singh, V.P.; Sil, A.; Jayaganthan, R. Tribological behavior of plasma sprayed Cr2O3-3%TiO2 coatings. Wear 2011, 272, 149–158. [Google Scholar] [CrossRef]
- Monticelli, C.; Balbo, A.; Zucchi, F. Corrosion and tribocorrosion behaviour of cermet and cermet/nanoscale multilayer CrN/NbN coatings. Surf. Coat. Technol. 2010, 204, 1452–1460. [Google Scholar] [CrossRef]
- Monticelli, C.; Balbo, A.; Zucchi, F. Corrosion and tribocorrosion behaviour of thermally sprayed ceramic coatings on steel. Surf. Coat. Technol. 2011, 205, 3683–3691. [Google Scholar] [CrossRef]
- Ogwu, A.A.; Oje, A.M.; Kavanagh, J. Corrosion, ion release and Mott-Schottky probe of chromium oxide coatings in saline solution with potential for orthopaedic implant applications. Mater. Res. Express 2016, 3, 45401. [Google Scholar] [CrossRef]
- Keshri, A.K.; Agarwal, A. Wear behavior of plasma-sprayed carbon nanotube-reinforced aluminum oxide coating in marine and high-temperature environments. J. Therm. Spray Technol. 2011, 20, 1217–1230. [Google Scholar] [CrossRef]
- Mukherjee, B.; Rahman, O.S.A.; Islam, A.; Sribalaji, M.; Keshri, A.K. Plasma sprayed carbon nanotube and graphene nanoplatelets reinforced alumina hybrid composite coating with outstanding toughness. J. Alloys Compd. 2017, 727, 658–670. [Google Scholar] [CrossRef]
- Sadri, E.; Ashrafizadeh, F. Structural characterization and mechanical properties of plasma sprayed nanostructured Cr2O3-Ag composite coatings. Surf. Coat. Technol. 2013, 236, 91–101. [Google Scholar] [CrossRef]
- Shankar, S.; Kumar, P.K. Frictional characteristics of diamond like carbon and tungsten carbide/carbon coated high carbon high chromium steel against carbon in dry sliding conformal contact for mechanical seals. Mech. Ind. 2017, 18, 115. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Dang, J.Q.; Zhao, W.G.; Yan, X.T. Tribological behaviors of the thick metal coating for the contact mechanical seal under the water-lubricated conditions. Ind. Lubr. Tribol. 2019, 71, 173–180. [Google Scholar] [CrossRef]
- Lu, J.; Wang, T.; Ding, X.; Song, H.; Li, H. Tribological performance of frictional pairs with different materials and bi-composite surface texture configurations. Appl. Sci. 2021, 11, 4738. [Google Scholar] [CrossRef]
- Qiu, Y.; Khonsari, M.M. Investigation of tribological behaviors of annular rings with spiral groove. Tribol. Int. 2011, 44, 1610–1619. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Q.Z.; Li, S.X.; Li, S.C.; Chen, G.Y.; Liu, X.H.; He, Y.Y.; Luo, J.B. Influence of a carbon-based tribofilm induced by the friction temperature on the tribological properties of impregnated graphite sliding against a cemented carbide. Friction 2021, 9, 686–696. [Google Scholar] [CrossRef]
- Williams, J.A.; Morris, J.H.; Ball, A. The effect of transfer layers on the surface contact and wear of carbon-graphite materials. Tribol. Int. 1997, 9, 663–676. [Google Scholar] [CrossRef]
- Jin, K.; Qiao, Z.; Zhu, S.; Cheng, J.; Yin, B.; Yang, J. Friction and wear properties and mechanism of bronze-Cr-Ag composites under dry-sliding conditions. Tribol. Int. 2016, 96, 132–140. [Google Scholar] [CrossRef]
- Engqvist, H.; Hogberg, H.; Botton, G.A.; Ederyd, S.; Axen, N. Tribofilm formation on cemented carbides in dry sliding conformal contact. Wear 2000, 239, 219–228. [Google Scholar] [CrossRef]
- Hokao, M.; Hironaka, S.; Suda, Y.; Yamamoto, Y. Friction and wear properties of graphiter glassy carbon composites. Wear 2000, 237, 54–62. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Wang, Y.; Guo, F.; Liu, X.; Wang, Y. Wear behavior of WC-Ni sliding against graphite under water lubrication. J. Mater. Sci. Technol. 2017, 33, 1346–1352. [Google Scholar] [CrossRef]
- Guo, F.; Tian, Y.; Liu, Y.; Wang, Y. Ultralow friction between cemented carbide and graphite in water using three-step ring-on-ring friction test. Wear 2016, 352, 54–64. [Google Scholar] [CrossRef]
- Shankar, S.; Praveenkumar, G.; Krishnakumar, P. Experimental study on frictional characteristics of tungsten carbide versus carbon as mechanical seals under dry and eco-friendly lubrications. Int. J. Refract. Met. Hard Mater. 2016, 54, 39–45. [Google Scholar] [CrossRef]
- Li, Q.Z.; Li, S.X.; Zheng, R.; Zhong, J.F.; Li, S.C.; Liao, H.R. Test analysis on the opening process of oil-gas miscible reflux pumping seal. Aeroengine 2020, 46, 22–27. [Google Scholar]
- Fang, L.; Chen, G.D. The study of droplet deformation and droplet volume fraction in an aero-engine bearing chamber. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 2264–2277. [Google Scholar] [CrossRef]
- Fei, W.; Chen, G.D.; Fu, Y.; Tao, W. Transient analysis of air/oil two-phase flow in bearing chamber under the periodic boundary conditions. MATEC Web Conf. 2017, 95, 06009. [Google Scholar] [CrossRef]
- Lafon-Placette, S.; Delbé, K.; Denape, J.; Ferrato, M. Tribological characterization of silicon carbide and carbon materials. J. Eur. Ceram. 2015, 35, 1147–1159. [Google Scholar] [CrossRef]
- Cao, H.M.; Zhou, X.; Li, X.Y.; Lu, K. Friction mechanism in the running-in stage of copper: From plastic deformation to delamination and oxidation. Tribol. Int. 2017, 115, 3–7. [Google Scholar] [CrossRef]
- Su, L.; Gao, F.; Han, X.; Chen, J. Effect of copper powder third body on tribological property of copper-based friction materials. Tribol. Int. 2015, 90, 420–425. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Xiao, J.; Zhou, K. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite. Trans. Nonferrous Met. Soc. China 2015, 25, 3354–3362. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Sun, L.; Li, Y.; Zheng, B.; Zhai, W. Effect of physical properties of Cu-Ni-graphite composites on tribological characteristics by grey correlation analysis. Results Phys. 2017, 7, 263–271. [Google Scholar] [CrossRef]
- Sobhanverdi, R.; Akbari, A. Porosity and microstructural features of plasma sprayed Yttria stabilized Zirconia thermal barrier coatings. Ceram. Int. 2015, 41, 14517–14528. [Google Scholar] [CrossRef]
- Ghazali, M.J.; Forghani, S.M.; Hassanuddin, N.; Muchtar, A.; Daud, A.R. Comparative wear study of plasma sprayed TiO2 and Al2O3-TiO2 on mild steels. Tribol. Int. 2016, 93, 681–686. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Balasubramanian, V.; Rajendran, R. Developing empirical relationships to estimate porosity and microhardness of plasma-sprayed YSZ coatings. Ceram. Int. 2014, 40, 3171–3183. [Google Scholar] [CrossRef]
- Li, Z.T.; Zhou, R.; Hao, M.M.; Tian, J.; Zhang, N. Friction properties of impregnated graphite with 9Cr18 sealing frictional pair. Lubr. Eng. 2023, 48, 128–133. [Google Scholar]
- Zhu, Z.G.; Bai, S.; Wu, J.F.; Xu, L.; Li, T.; Ren, Y.; Liu, C. Friction and wear behavior of resin/graphite composite under dry sliding. J. Mater. Sci. Technol. 2015, 31, 325–330. [Google Scholar] [CrossRef]
- Jradi, K.; Schmitt, M.; Bistac, S. Surface modifications induced by the friction of graphites against steel. Appl. Surf. Sci. 2009, 255, 4219–4224. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Guo, F.; Liu, X.; Wang, Y. Friction characteristics of impregnated and non-impregnated graphite against cemented carbide under water lubrication. J. Mater. Sci. Technol. 2017, 33, 1203–1209. [Google Scholar] [CrossRef]
- Jia, Q.; Yuan, X.Y.; Zhang, G.Y.; Dong, G.N.; Zhao, W.G. Dry friction and wear characteristics of impregnated graphite in a corrosive environment. Chin. J. Mech. Eng. 2014, 27, 965–971. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Liu, D.; Gu, Y.; Zheng, R.; Ma, R.; Li, S.; Wang, Y.; Shi, Y. The tribological performance of metal-/resin-impregnated graphite under harsh condition. Lubricants 2022, 10, 2. [Google Scholar] [CrossRef]
- Xiao, J.K.; Zhang, L.; Zhou, K.C.; Li, J.G.; Xie, X.L.; Li, Z.Y. Anisotropic friction behaviour of highly oriented pyrolytic graphite. Carbon 2013, 65, 53–62. [Google Scholar] [CrossRef]
- Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K. Friction anisotropy in boronated graphite. Appl. Surf. Sci. 2015, 324, 443–454. [Google Scholar] [CrossRef]
- Uchibori, Z.; Tanoue, H.; Hirabayashi, H.; Kaneta, M. Various causes of wear of cemented carbide rings applied to water pump seals. Lubr. Eng. 1990, 46, 163–171. [Google Scholar]
- Senouci, A.; Frene, J.; Zaidi, H. Wear mechanism in graphite-copper electrical sliding contact. Wear 1999, 225–229, 949–953. [Google Scholar] [CrossRef]
Materials | Location | Microhardness (HRA) | Porosity (vol.%) | Density (g/cm3) |
---|---|---|---|---|
Metal-IG | Rotating ring | 64.1 | 3.0 | 2.20 |
Resin-IG | Rotating ring | 60.8 | 2.0 | 1.70 |
18Cr2Ni4WA | Stationary ring | 65.3 | / | 7.91 |
18Cr2Ni4WA with Al2O3 coating | Stationary ring | 84.5 | / | 3.42 |
18Cr2Ni4WAwith Cr2O3 coating | Stationary ring | 73.1 | / | 5.21 |
Parameters | Value |
---|---|
Outer diameter of frictional pair Do (mm) | 50.5 |
Inner diameter of frictional pair Di (mm) | 41.5 |
Groove root diameter Dg (mm) | 47.8 |
Groove depth hg (μm) | 5 |
Spiral angle α (°) | 20 |
Groove land ratio γ | 0.5 |
Number of groove Ng | 12 |
Step | Time (s) | Load (N) | Speed (r·min−1) |
---|---|---|---|
1 | 120 (Loading) | 40 | 0 |
2 | 300 | 160 | 400 |
3 | 300 | 160 | 800 |
4 | 300 | 160 | 1200 |
5 | 300 | 160 | 1600 |
6 | 300 | 160 | 2000 |
7 | 60 (Stop) | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liao, H.; Zhao, J.; Li, S. The Tribological Performance of Frictional Pair of Gas–Liquid Miscible Backflow Pumping Seal in Oil–Air Environment. Lubricants 2023, 11, 220. https://doi.org/10.3390/lubricants11050220
Li S, Liao H, Zhao J, Li S. The Tribological Performance of Frictional Pair of Gas–Liquid Miscible Backflow Pumping Seal in Oil–Air Environment. Lubricants. 2023; 11(5):220. https://doi.org/10.3390/lubricants11050220
Chicago/Turabian StyleLi, Shicong, Haoran Liao, Jun Zhao, and Shuangxi Li. 2023. "The Tribological Performance of Frictional Pair of Gas–Liquid Miscible Backflow Pumping Seal in Oil–Air Environment" Lubricants 11, no. 5: 220. https://doi.org/10.3390/lubricants11050220
APA StyleLi, S., Liao, H., Zhao, J., & Li, S. (2023). The Tribological Performance of Frictional Pair of Gas–Liquid Miscible Backflow Pumping Seal in Oil–Air Environment. Lubricants, 11(5), 220. https://doi.org/10.3390/lubricants11050220