Tribological Behavior of WS2 Nanoparticles as Additives in Calcium Sulfonate Complex–Polyurea Grease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Samples
2.2. Tribological Tests
2.3. Surface Analysis and Characterization
3. Results and Discussion
3.1. Tribological Properties of Samples
3.2. Microstructure Characterization
3.3. XPS Analysis of the Worn Surface
3.4. Lubrication Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Takahashi, A.; Takeichi, Y.; Kimura, M.; Hashimoto, K. Low Friction Mechanism Survey of Tungsten Disulfide by Using XRD, XPS, and XAFS. Tribol. Lett. 2021, 69, 84. [Google Scholar] [CrossRef]
- Nian, J.; Chen, L.; Guo, Z.; Liu, W. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum. Friction 2017, 5, 23–31. [Google Scholar] [CrossRef]
- Aldana, P.U.; Dassenoy, F.; Vacher, B.; Le Mogne, T.; Thiebaut, B. WS2 nanoparticles anti-wear and friction reducing properties on rough surfaces in the presence of ZDDP additive. Tribol. Int. 2016, 102, 213–221. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, Y.; Yang, G.; Gao, C.; Yu, L.; Zhang, S.; Zhang, P. Synthesis of oil-soluble WS2 nanosheets under mild condition and study of their effect on tribological properties of poly-alpha olefin under evaluated temperatures. Tribol. Int. 2019, 138, 68–78. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, G.; Zhang, Y.; Gao, C.; Ma, J.; Zhang, S.; Zhang, P. Facile method preparation of oil-soluble tungsten disulfide nanosheets and their tribological properties over a wide temperature range. Tribol. Int. 2019, 135, 287–295. [Google Scholar] [CrossRef]
- Gullac, B.; Akalin, O. Frictional Characteristics of IF-WS2 Nanoparticles in Simulated Engine Conditions. Tribol. Trans. 2010, 53, 939–947. [Google Scholar] [CrossRef]
- Chen, W.; Thummavichai, K.; Chen, X.; Liu, G.; Lv, X.; Zhang, L.; Chen, D.; Tiwari, S.K.; Wang, N.; Zhu, Y. Design and Evaluation the Anti-Wear Property of Inorganic Fullerene Tungsten Disulfide as Additive in PAO6 Oil. Crystals 2021, 11, 570. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.; Hu, C.; Feng, X. Conductivity and tribological properties of IL-PANI/WS2 composite material in lithium complex grease. Friction 2023, 11, 977–991. [Google Scholar] [CrossRef]
- Xia, W.; Zhao, J.; Wu, H.; Jiao, S.; Zhao, X.; Zhang, X.; Xu, J.; Jiang, Z. Analysisofoil-in-water based nanolubricants with varying mass fractions of oil and TiO2 nanoparticles. Wear 2018, 396, 162–171. [Google Scholar] [CrossRef]
- Duong, H.M.; Tran, T.Q.; Kopp, R.; Myint, S.M.; Peng, L. Chapter 1—Direct Spinning of Horizontally Aligned Carbon Nanotube Fibers and Films from the Floating Catalyst Method. In Nanotube Superfiber Materials, 2nd ed.; Schulz, M.J., Shanov, V., Yin, Z., Cahay, M., Eds.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 3–29. [Google Scholar] [CrossRef]
- Duong, H.M.; Myint, S.M.; Tran, T.Q.; Le, D.K. Chapter 6—Post-spinning treatments to carbon nanotube fibers. In Carbon Nanotube Fibers and Yarns, 1st ed.; Miao, M., Ed.; Woodhead Publishing: Cambridge, UK, 2020; pp. 103–134. [Google Scholar] [CrossRef]
- Yu, B.; Liu, Z.; Ma, C.; Sun, J.; Liu, W.; Zhou, F. Ionic liquid modified multi-walled carbon nanotubes as lubricant additive. Tribol. Int. 2015, 81, 38–42. [Google Scholar] [CrossRef]
- Markandan, K.; Nagarajan, T.; Walvekar, R.; Chaudhary, V.; Khalid, M. Enhanced Tribological Behaviour of Hybrid MoS2@Ti3C2 MXene as an Effective Anti-Friction Additive in Gasoline Engine Oil. Lubricants 2023, 11, 47. [Google Scholar] [CrossRef]
- Cui, Y.; Xue, S.; Chen, X.; Bai, W.; Liu, S.; Ye, Q.; Zhou, F. Fabrication of two-dimensional MXene nanosheets loading Cu nanoparticles as lubricant additives for friction and wear reduction. Tribol. Int. 2022, 176, 107934. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, M.; Wang, Y.; Yuan, J.; Men, X. Significance of constructed MXene@Ag hybrids for enhancing the mechanical and tribological performance of epoxy composites. Tribol. Int. 2022, 165, 107328. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Wang, L.; Tian, Q.; Wu, J.; Li, P.; Chen, A.; Huang, S.; Lei, C. Tribological behavior of carbon-fiber-reinforced polymer with highly oriented graphite nanoplatelets. Tribol. Int. 2023, 186, 108577. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, M.; Zhao, G.; Wang, X. Tribological Behavior of Amorphous and Crystalline Overbased Calcium Sulfonate as Additives in Lithium Complex Grease. Tribol. Lett. 2012, 45, 265–273. [Google Scholar] [CrossRef]
- Buyanovskii, I.A.; Lashkhi, V.L.; Samusenko, V.D.; Dotsenko, A.I. Tribological Characteristics of Calcium Sulfonates as Detergents for Engine Oils. J. Frict. Wear. 2017, 38, 115–120. [Google Scholar] [CrossRef]
- Bedekar II, V.; Mistry, K.; Voothaluru, R.; Qu, J.; Poplawsky, J. Atomistic investigation of calcium sulfonate and lithium complex grease tribofilms under severe sliding conditions. CIRP Ann.-Manuf. Technol. 2022, 71, 497–500. [Google Scholar] [CrossRef]
- Fan, X.; Li, W.; Li, H.; Zhu, M.; Xia, Y.; Wang, J. Probing the effect of thickener on tribological properties of lubricating greases. Tribol. Int. 2018, 118, 128–139. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, Y.; Liu, Z. The rheological and tribological properties of calcium sulfonate complex greases. Friction 2015, 3, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Fu, H.; Li, W.; Zhu, M. Exploring Lubrication Function of MACs Greases for TC4 Alloy under Sliding and Fretting Conditions. Tribol. Lett. 2018, 66, 135. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, G.; Wang, X. Tribological Performance of Lubricating Greases Based on Calcium Carbonate Polymorphs Under the Boundary Lubrication Condition. Tribol. Lett. 2012, 47, 183–194. [Google Scholar] [CrossRef]
- Bosman, R.; Lugt, P.M. The Microstructure of Calcium Sulfonate Complex Lubricating Grease and Its Change in the Presence of Water. Tribol. Trans. 2018, 61, 842–849. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Bosman, R.; Lugt, P.M. On the Shear Stability of Dry and Water-Contaminated Calcium Sulfonate Complex Lubricating Greases. Tribol. Trans. 2019, 62, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Cyriac, F.; Lugt, P.M.; Bosman, R.; Venner, C.H. Impact of Water on EHL Film Thickness of Lubricating Greases in Rolling Point Contacts. Tribol. Lett. 2016, 61, 23. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Ma, R.; Zhao, Q.; Zhao, G.; Wang, X. The Impact of Water on the Tribological Behavior of Lubricating Grease Based on Calcium Carbonate Polymorphs. Lubricants 2022, 10, 188. [Google Scholar] [CrossRef]
- Gao, Y.; Ge, X.; Wen, Z.; Xia, Y. Comparison Friction and Wear Properties of Overbased Calcium Sulfonate Complex Grease and Polyurea Grease. Adv. Mater. Res. 2013, 734–737, 2484. [Google Scholar] [CrossRef]
- Wu, C.; Xiong, R.; Ni, J.; Yao, L.; Chen, L.; Li, X. Effects of CuO nanoparticles on friction and vibration behaviors of grease on rolling bearing. Tribol. Int. 2020, 152, 106552. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, P.; Li, W.; Fan, X.; Zhang, L.; Li, H.; Zhu, M. Probing the Synergy of Blended Lithium Complex Soap and Calcium Sulfonate Towards Good Lubrication and Anti-Corrosion Performance. Tribol. Lett. 2020, 68, 99. [Google Scholar] [CrossRef]
- Yan, J.; Zeng, H.; Liu, T.; Mai, J.; Ji, H. Tribological Performance and Surface Analysis of a Borate Calcium as Additive in Lithium and Polyurea Greases. Tribol. Trans. 2017, 60, 621–628. [Google Scholar] [CrossRef]
- Li, Z.; Meng, F.; Ding, H.; Wang, W.; Liu, Q. Preparation and Tribological Properties of Carbon-Coated WS2 Nanosheets. Materials 2019, 12, 2835. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yan, Z.; Zhang, X.; Hao, J.; Zhou, H.; Liu, W. Response Mechanism of Structure and Tribological Properties of WS2/P201 Hybrid Lubrication System Under Atomic Oxygen Irradiation. Tribol. Trans. 2023, 66, 185–192. [Google Scholar] [CrossRef]
Reciprocating Distance/mm | Reciprocating Frequency/Hz | Test Load (Fz)/N | Test Time/min | Temperature/°C |
---|---|---|---|---|
8 | 1 | 20 | 30 | 25/100/150/200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Mo, Y.; Lv, J.; Wang, J. Tribological Behavior of WS2 Nanoparticles as Additives in Calcium Sulfonate Complex–Polyurea Grease. Lubricants 2023, 11, 259. https://doi.org/10.3390/lubricants11060259
Zhang H, Mo Y, Lv J, Wang J. Tribological Behavior of WS2 Nanoparticles as Additives in Calcium Sulfonate Complex–Polyurea Grease. Lubricants. 2023; 11(6):259. https://doi.org/10.3390/lubricants11060259
Chicago/Turabian StyleZhang, Hong, Yimin Mo, Juncheng Lv, and Jun Wang. 2023. "Tribological Behavior of WS2 Nanoparticles as Additives in Calcium Sulfonate Complex–Polyurea Grease" Lubricants 11, no. 6: 259. https://doi.org/10.3390/lubricants11060259
APA StyleZhang, H., Mo, Y., Lv, J., & Wang, J. (2023). Tribological Behavior of WS2 Nanoparticles as Additives in Calcium Sulfonate Complex–Polyurea Grease. Lubricants, 11(6), 259. https://doi.org/10.3390/lubricants11060259