Tribological, Oxidation and Thermal Analysis of Advanced Microwave–Hydrothermal Synthesised Ti3C2Tx MXene as Additives in Outboard Engine Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ti3C2Tx MXene
2.3. Characterisation
2.4. Formulation of Ti3C2Tx MXene Nanolubricant
2.5. Physiochemical Characterisation of Ti3C2Tx MXene Nanolubricant
2.6. Four-Ball Tribotesting of Ti3C2Tx MXene Nanolubricant
2.7. Oxidation Analysis of Ti3C2Tx MXene Nanolubricant
2.8. Thermal Conductivity Analysis of Ti3C2Tx MXene Nanolubricant
3. Results and Discussions
3.1. Chemical and Structural Characterization of Nanomaterials
3.2. Physiochemical Characterisation of Nanolubricant
3.3. Tribological Analysis of Ti3C2Tx MXene Nanolubricant
3.4. Oxidation Analysis of Ti3C2Tx MXene Nanolubricant
3.5. Thermal Conductivity Analysis of Ti3C2Tx MXene Nanolubricant
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Material | Base Fluid | Concentration | Enhancement of Tribological Properties | Reference | |
COF | Wear | ||||
MXene Ti3C2TX nanosheets | DI- H2O (AP30-Ti3C2TX) | 0.8 mg/mL | 34.74% | 45.58% | [64] |
MXene Ti3C2TX | DI- H2O | 5 wt.% | 20% | 48% | [65] |
MXene Ti3C2TX | PAO8 base oil | 0.8 wt.% | 9.5% | 7.7% | [66] |
Ti3C2TX | Outboard oil | 0.01 wt.% | 0.8% | - | [1] |
TiO2/Ti3C2TX | Oil | 1.0 wt.% | 29.1% (with 20N load) | Depth: 30 µm Width: 280 µm | [67] |
Ti3C2(OH)2 | 100SN base oil | 1.0 wt.% | around 20% (with 15N load) | - | [68] |
Ti3C2TX | Liquid paraffin | 1.0 wt.% | 49.6% | - | [69] |
KTO-Ti3C2Tx | PAO8 base oil | 1.0 wt.% | 30.6% | - | [55] |
TDPA-Ti3C2 | Castor oil | 0.1 wt.% | 27.9% | 55.1% | [70] |
DDP-Ti3C2Tx | 500SN base oil | 0.3 wt.% | COF: 0.11 | 87% | [71] |
MXenes/MoS2 heterojunction | Liquid paraffin | 5.0 wt.% | 39% | - | [72] |
Ti3C2Tx/MoS2 heterojunction | 150SN base oil | 0.3 wt.% | 39% | 85% | [73] |
MXene-HS | PAO 10 | 1.0 wt.% | COF: 0.12 | 82% | [74] |
Hybrid MoS2@Ti3C2 | SAE 5W-40-based engine oil | 0.05 wt.% | 13.9% | 23.8% | [47] |
MoS2 | SAE 20W50 diesel engine oil | 0.01 wt.% | 19.24% | 19.52% | [49] |
WS2 | Base oil + PVP surfactant | 1.0 wt.% | 33% | 45% | [75] |
Multi-layered graphene | PAO2 oil | 0.05 wt.% | 78% | 16% | [76] |
Graphene nanoplatelets (GNPs) | Palm oil TMP | 0.05 wt.% | 5% | 15% | [77] |
Graphene nanoparticle (GP) | Synthetic oil, PAO4 | 0.01 wt.% | 78% (at 60–100 °C) | 90% (at 60–100 °C) | [78] |
Graphene | PAO4 oil | 0.01 wt.% | 50% | greater than 50% | [79] |
Graphene | Vegetable oil | - | From 0.0825 to 0.0714 | From 414 to 374 | [80] |
GO | DI-H2O | 26.1% | 39.4% | [81] | |
GO | DI-H2O | 0.1 wt.% | 0.03 (2.3 times lower than 0.5 wt% ND) | - | [82] |
GO | DI-H2O | 0.1 wt.% | COF: 0.05 | No obvious wear after 60 000 cycles | [83] |
CNT | Pure palm oil | 2 wt.% | COF: 0.121 (APE-10) | - | [84] |
MXene Ti3C2TX | TC-W outboard engine oil | 0.01 wt.% | 14.5% | 6.3% | Our work |
References
- Rasheed, A.K.; Khalid, M.; Nor, A.F.; Wong, W.Y.; Duolikun, T.; Natu, V.; Barsoum, M.W.; Leo, B.F.; Zaharin, H.A.; Ghazali, M.J. MXene-Graphene Hybrid Nanoflakes as Friction Modifiers for Outboard Engine Oil. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India, 25–26 September 2020; Volume 834, p. 012039. [Google Scholar] [CrossRef]
- Anh Tran, T. Some Methods to Prevent the Wear of Piston-Cylinder When Using Low Sulphur Fuel Oil (LSFO) for All Ships Sailing on Emission Control Areas (ECAs). In Diesel and Gasoline Engines; IntechOpen: London, UK, 2020. [Google Scholar]
- UNEP (United Nations Environment Programme) Marine Pollution. Available online: https://www.unep.org/explore-topics/oceans-seas/ (accessed on 16 May 2023).
- Chen, C.; Saikawa, E.; Comer, B.; Mao, X.; Rutherford, D. Ship Emission Impacts on Air Quality and Human Health in the Pearl River Delta (PRD) Region, China, in 2015, with Projections to 2030. GeoHealth 2019, 3, 284–306. [Google Scholar] [CrossRef] [Green Version]
- UN (United Nation) Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 16 May 2023).
- Ali, Z.A.A.A.; Takhakh, A.M.; Al-Waily, M. A Review of Use of Nanoparticle Additives in Lubricants to Improve Its Tribological Properties. Mater. Today Proc. 2022, 52, 1442–1450. [Google Scholar] [CrossRef]
- Ng, B.Y.S.; Ong, H.C.; Lau, H.L.N.; Ishak, N.S.; Elfasakhany, A.; Lee, H.V. Production of Sustainable Two-Stroke Engine Biolubricant Ester Base Oil from Palm Fatty Acid Distillate. Ind. Crops Prod. 2022, 175, 114224. [Google Scholar] [CrossRef]
- Zaharin, H.A.; Ghazali, M.J.; Thachnatharen, N.; Ezzah, F.; Walvekar, R.; Khalid, M. Progress in 2D Materials Based Nanolubricants: A Review. FlatChem 2023, 38, 100485. [Google Scholar] [CrossRef]
- Ji, Z.; Zhang, L.; Xie, G.; Xu, W.; Guo, D.; Luo, J.; Prakash, B. Mechanical and Tribological Properties of Nanocomposites Incorporated with Two-Dimensional Materials. Friction 2020, 8, 813–846. [Google Scholar] [CrossRef]
- Rosenkranz, A.; Liu, Y.; Yang, L.; Chen, L. 2D Nano-Materials beyond Graphene: From Synthesis to Tribological Studies; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 10, ISBN 0123456789. [Google Scholar]
- Al-Janabi, A.S.; Hussin, M.; Abdullah, M.Z. Stability, Thermal Conductivity and Rheological Properties of Graphene and MWCNT in Nanolubricant Using Additive Surfactants. Case Stud. Therm. Eng. 2021, 28, 101607. [Google Scholar] [CrossRef]
- Yang, L.; Mao, M.; Huang, J.N.; Ji, W. Enhancing the Thermal Conductivity of SAE 50 Engine Oil by Adding Zinc Oxide Nano-Powder: An Experimental Study. Powder Technol. 2019, 356, 335–341. [Google Scholar] [CrossRef]
- Anantha Kumar, K.; Sandeep, N.; Samrat, S.P.; Ashwinkumar, G.P. Effect of Electromagnetic Induction on the Heat Transmission in Engine Oil-Based Hybrid Nano and Ferrofluids: A Nanotechnology Application. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022. [Google Scholar] [CrossRef]
- Manu, B.R.; Gupta, A.; Jayatissa, A.H. Tribological Properties of 2D Materials and Composites—A Review of Recent Advances. Materials 2021, 14, 1630. [Google Scholar] [CrossRef]
- Thachnatharen, N.; Khalid, M.; Arulraj, A.; Sridewi, N. Tribological Performance of Hexagonal Boron Nitride (HBN) as Nano-Additives in Military Grade Diesel Engine Oil. Mater. Today Proc. 2022, 50, 70–73. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Zhang, Y.; Liu, S.; Bai, Y. Effect of Different Preparation Processes on Tribological Properties of Graphene. Nanomater. Nanotechnol. 2020, 10, 1847980420946655. [Google Scholar] [CrossRef]
- Yi, S.; Li, J.; Liu, Y.; Ge, X.; Zhang, J.; Luo, J. In-Situ Formation of Tribofilm with Ti3C2Tx MXene Nanoflakes Triggers Macroscale Superlubricity. Tribol. Int. 2021, 154, 106695. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Progress and Insights in the Application of MXenes as New 2D Nanomaterials Suitable for Biosensors and Biofuel Cell Design. Int. J. Mol. Sci. 2020, 21, 9224. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2013, 26, 992–1005. [Google Scholar] [CrossRef]
- Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.-L.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. MXene: A Promising Transition Metal Carbide Anode for Lithium-Ion Batteries. Electrochem. Commun. 2012, 16, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Rosenkranz, A.; Righi, M.C.; Sumant, A.V.; Anasori, B.; Mochalin, V.N. Perspectives of 2D MXene Tribology. Adv. Mater. 2023, 35, 2207757. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Yan, H.; Song, S.; He, D.; Lin, Q.; Li, W.; Fan, X.; Zhu, M. State-of-the-Art Progresses for Ti3C2Tx MXene Reinforced Polymer Composites in Corrosion and Tribology Aspects. Adv. Colloid Interface Sci. 2022, 309, 102790. [Google Scholar] [CrossRef]
- Miao, X.; Li, Z.; Liu, S.; Wang, J.; Yang, S. MXenes in Tribology: Current Status and Perspectives. Adv. Powder Mater. 2023, 2, 100092. [Google Scholar] [CrossRef]
- Wyatt, B.C.; Rosenkranz, A.; Anasori, B. 2D MXenes: Tunable Mechanical and Tribological Properties. Adv. Mater. 2021, 33, 2007973. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, M.; Wang, Y.; Yuan, J.; Men, X. Significance of Constructed MXene@Ag Hybrids for Enhancing the Mechanical and Tribological Performance of Epoxy Composites. Tribol. Int. 2022, 165, 107328. [Google Scholar] [CrossRef]
- Parra-Muñoz, N.; Soler, M.; Rosenkranz, A. Covalent Functionalization of MXenes for Tribological Purposes—A Critical Review. Adv. Colloid Interface Sci. 2022, 309, 102792. [Google Scholar] [CrossRef] [PubMed]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Naguib, M.; Presser, V.; Lane, N.; Tallman, D.; Gogotsi, Y.; Lu, J.; Hultman, L.; Barsoum, M.W. Synthesis of a New Nanocrystalline Titanium Aluminum Fluoride Phase by Reaction of Ti2AlC with Hydrofluoric Acid. RSC Adv. 2011, 1, 1493. [Google Scholar] [CrossRef]
- Li, L.; Li, G.; Tan, L.; Zhang, Y.; Wu, B. Highly Efficiently Delaminated Single-Layered MXene Nanosheets with Large Lateral Size. Langmuir 2017, 33, 9000–9006. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Wang, B.; Shen, C.; Zhang, C.; Hu, Q.; Zhou, A.; Liu, B. Synthesis and Electrochemical Performance of Ti3C2Tx with Hydrothermal Process. Electron. Mater. Lett. 2016, 12, 702–710. [Google Scholar] [CrossRef]
- Peng, C.; Wei, P.; Chen, X.; Zhang, Y.; Zhu, F.; Cao, Y.; Wang, H.; Yu, H.; Peng, F. A Hydrothermal Etching Route to Synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced Exfoliation and Improved Adsorption Performance. Ceram. Int. 2018, 44, 18886–18893. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A.G.; Lohe, M.R.; Blom, P.W.M.; Feng, X. Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angew. Chem.—Int. Ed. 2018, 57, 15491–15495. [Google Scholar] [CrossRef]
- Numan, A.; Rafique, S.; Khalid, M.; Zaharin, H.A.; Radwan, A.; Mokri, N.A.; Ching, O.P.; Walvekar, R. Microwave-Assisted Rapid MAX Phase Etching and Delamination: A Paradigm Shift in MXene Synthesis. Mater. Chem. Phys. 2022, 288, 126429. [Google Scholar] [CrossRef]
- Gerard, O.; Numan, A.; Krishnan, S.; Khalid, M.; Subramaniam, R.; Kasi, R. A Review on the Recent Advances in Binder-Free Electrodes for Electrochemical Energy Storage Application. J. Energy Storage 2022, 50, 104283. [Google Scholar] [CrossRef]
- Gao, F.; Lu, Q.; Komarneni, S. Fast Synthesis of Cerium Oxide Nanoparticles and Nanorods. J. Nanosci. Nanotechnol. 2006, 6, 3812–3819. [Google Scholar] [CrossRef] [PubMed]
- Rosa, R.; Ponzoni, C.; Leonelli, C. Direct Energy Supply to the Reaction Mixture during Microwave-Assisted Hydrothermal and Combustion Synthesis of Inorganic Materials. Inorganics 2014, 2, 191–210. [Google Scholar] [CrossRef] [Green Version]
- Nageswara Rao, B.; Ramesh Kumar, P.; Padmaraj, O.; Venkateswarlu, M.; Satyanarayana, N. Rapid Microwave Assisted Hydrothermal Synthesis of Porous α-Fe 2 O 3 Nanostructures as Stable and High Capacity Negative Electrode for Lithium and Sodium Ion Batteries. RSC Adv. 2015, 5, 34761–34768. [Google Scholar] [CrossRef]
- Agusu, L.; Ahmad, L.O.; Anggara, D.; Alimin; Mitsudo, S.; Fujii, Y.; Kikuchi, H. Microwave Hydrothermal Synthesis of Reduced Graphene Oxide: Effects of Microwave Power and Irradiation Time. J. Phys. Conf. Ser. 2018, 1011, 012012. [Google Scholar] [CrossRef]
- Kashinath, L. Microwave-Hydrothermal Synthesis of Copper Sulphide Nanorods Embedded on Graphene Sheets as an Efficient Electrocatalyst for Excellent Hydrogen Evolution Reaction. Fuel 2021, 291, 120143. [Google Scholar] [CrossRef]
- Nagarajan, T.; Mohammad, K.; Nanthini, S.; Priyanka, J.; Rashmi, W. Microwave Synthesis of Molybdenum Disulfide Nanoparticles Using Response Surface Methodology for Tribological Application. Nanomaterials 2022, 12, 3369. [Google Scholar] [CrossRef]
- Pan, X.; Shinde, N.M.; Lee, M.; Kim, D.; Kim, K.H.; Kang, M. Controlled Nanosheet Morphology of Titanium Carbide Ti3C2Tx MXene via Drying Methods and Its Electrochemical Analysis. J. Solid State Electrochem. 2020, 24, 675–686. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M.W. Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef]
- Said, Z.; Sundar, L.S.; Tiwari, A.K.; Ali, H.M.; Sheikholeslami, M.; Bellos, E.; Babar, H. Recent Advances on the Fundamental Physical Phenomena behind Stability, Dynamic Motion, Thermophysical Properties, Heat Transport, Applications, and Challenges of Nanofluids. Phys. Rep. 2022, 946, 1–94. [Google Scholar] [CrossRef]
- Kamarulzaman, M.K.; Hisham, S.; Kadirgama, K.; Ramasamy, D.; Samykano, M.; Said, Z.; Pandey, A.K. Improvement in Stability and Thermophysical Properties of CNC-MXene Nanolubricant for Tribology Application. J. Mol. Liq. 2023, 381, 121695. [Google Scholar] [CrossRef]
- Mukherjee, S. Preparation and Stability of Nanofluids-A Review. IOSR J. Mech. Civ. Eng. 2013, 9, 63–69. [Google Scholar] [CrossRef]
- Markandan, K.; Nagarajan, T.; Walvekar, R.; Chaudhary, V.; Khalid, M. Enhanced Tribological Behaviour of Hybrid MoS2@Ti3C2 MXene as an Effective Anti-Friction Additive in Gasoline Engine Oil. Lubricants 2023, 11, 47. [Google Scholar] [CrossRef]
- Bao, Z.; Bing, N.; Zhu, X.; Xie, H.; Yu, W. Ti3C2Tx MXene Contained Nanofluids with High Thermal Conductivity, Super Colloidal Stability and Low Viscosity. Chem. Eng. J. 2021, 406, 126390. [Google Scholar] [CrossRef]
- Nagarajan, T.; Khalid, M.; Sridewi, N.; Jagadish, P.; Shahabuddin, S.; Muthoosamy, K.; Walvekar, R. Tribological, Oxidation and Thermal Conductivity Studies of Microwave Synthesised Molybdenum Disulfide (MoS2) Nanoparticles as Nano-Additives in Diesel Based Engine Oil. Sci. Rep. 2022, 12, 14108. [Google Scholar] [CrossRef]
- Guo, J.; Wu, P.; Zeng, C.; Wu, W.; Zhao, X.; Liu, G.; Zhou, F.; Liu, W. Fluoropolymer Grafted Ti3C2Tx MXene as an Efficient Lubricant Additive for Fluorine-Containing Lubricating Oil. Tribol. Int. 2022, 170, 107500. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, M.; Jin, L.; Li, L.; Mo, Y.; Su, G.; Li, X.; Zhu, H.; Tian, Y. Recent Advances in Friction and Lubrication of Graphene and Other 2D Materials: Mechanisms and Applications. Friction 2019, 7, 199–216. [Google Scholar] [CrossRef] [Green Version]
- Suresha, B.; Hemanth, G.; Rakesh, A.; Adarsh, K.M. Tribological Behaviour of Pongamia Oil as Lubricant with and without Halloysite Nanotubes Using Four-Ball Tester. In Proceedings of the International Conference on Materials, Manufacturing and Machining 2019, Tamilnadu, India, 8–9 March 2019; p. 030011. [Google Scholar] [CrossRef]
- Fan, W.; Zhu, X.; Ke, F.; Chen, Y.; Dong, K.; Ji, J.; Chen, B.; Tongay, S.; Ager, J.W.; Liu, K.; et al. Vibrational Spectrum Renormalisation by Enforced Coupling across the van Der Waals Gap between MoS2 and WS2 Monolayers. Phys. Rev. B 2015, 92, 24408. [Google Scholar] [CrossRef] [Green Version]
- Rosenkranz, A.; Grützmacher, P.G.; Espinoza, R.; Fuenzalida, V.M.; Blanco, E.; Escalona, N.; Gracia, F.J.; Villarroel, R.; Guo, L.; Kang, R.; et al. Multi-Layer Ti3C2Tx-Nanoparticles (MXenes) as Solid Lubricants—Role of Surface Terminations and Intercalated Water. Appl. Surf. Sci. 2019, 494, 13–21. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Y.; Li, Y.; Liu, Y.; Dong, S. Preparation and Tribological Properties of Potassium Titanate-Ti3C2Tx Nanocomposites as Additives in Base Oil. Chin. Chem. Lett. 2019, 30, 502–504. [Google Scholar] [CrossRef]
- Jin, W.; Jiang, L.; Han, L.; Huang, H.; Zhang, J.; Guo, M.; Gu, Y.; Zhi, F.; Chen, Z.; Yang, G. Investigation of Thermal Conductivity Enhancement of Water-Based Graphene and Graphene/MXene Nanofluids. J. Mol. Liq. 2022, 367, 120455. [Google Scholar] [CrossRef]
- Walvekar, R.; Faris, I.A.; Khalid, M. Thermal Conductivity of Carbon Nanotube Nanofluid-Experimental and Theoretical Study. Heat Transf.—Asian Res. 2012, 41, 145–163. [Google Scholar] [CrossRef]
- Baby, T.T.; Ramaprabhu, S. Investigation of Thermal and Electrical Conductivity of Graphene Based Nanofluids. J. Appl. Phys. 2010, 108, 124308. [Google Scholar] [CrossRef]
- Aslfattahi, N.; Samylingam, L.; Abdelrazik, A.S.; Arifutzzaman, A.; Saidur, R. MXene Based New Class of Silicone Oil Nanofluids for the Performance Improvement of Concentrated Photovoltaic Thermal Collector. Sol. Energy Mater. Sol. Cells 2020, 211, 110526. [Google Scholar] [CrossRef]
- Qing, S.H.; Rashmi, W.; Khalid, M.; Gupta, T.C.S.M.; Nabipoor, M.; Hajibeigy, M.T. Thermal Conductivity and Electrical Properties of Hybrid SiO 2 -Graphene Naphthenic Mineral Oil Nanofluid as Potential Transformer Oil. Mater. Res. Express 2017, 4, 015504. [Google Scholar] [CrossRef]
- Yiamsawas, T.; Dalkilic, A.S.; Mahian, O.; Wongwises, S. Measurement and Correlation of the Viscosity of Water-Based Al2O3 and TiO2 Nanofluids in High Temperatures and Comparisons with Literature Reports. J. Dispers. Sci. Technol. 2013, 34, 1697–1703. [Google Scholar] [CrossRef]
- Malekzadeh, A.; Pouranfard, A.R.; Hatami, N.; Kazemnejad Banari, A.; Rahimi, M.R. Experimental Investigations on the Viscosity of Magnetic Nanofluids under the Influence of Temperature, Volume Fractions of Nanoparticles and External Magnetic Field. J. Appl. Fluid Mech. 2016, 9, 693–697. [Google Scholar] [CrossRef]
- Apmann, K.; Fulmer, R.; Soto, A.; Vafaei, S. Thermal Conductivity and Viscosity: Review and Optimisation of Effects of Nanoparticles. Materials 2021, 14, 1291. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, W. Simple Method for Preparing Nanometer Thick Ti3C2TX Sheets towards Highly Efficient Lubrication and Wear Resistance. Tribol. Int. 2021, 153, 106598. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Chung, K.-H. Assessment of Tribological Properties of Ti3C2 as a Water-Based Lubricant Additive. Materials 2020, 13, 5545. [Google Scholar] [CrossRef]
- Liu, Y. Synthesis and Tribological Property of Ti3C2TX Nanosheets. J. Mater. Sci. 2016, 52, 2200–2209. [Google Scholar] [CrossRef]
- Xue, M.; Wang, Z.; Yuan, F.; Zhang, X.; Wei, W.; Tang, H.; Li, C. Preparation of TiO2/Ti3C2Tx Hybrid Nanocomposites and Their Tribological Properties as Base Oil Lubricant Additives. RSC Adv. 2017, 7, 4312–4319. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xue, M.; Yang, X.; Wang, Z.; Luo, G.; Huang, Z.; Sui, X.; Li, C. Preparation and Tribological Properties of Ti3C2(OH)2 Nanosheets as Additives in Base Oil. RSC Adv. 2015, 5, 2762–2767. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B.; Song, H.; Tang, H.; Li, C. Synthesis, Characterization, and Tribological Properties of Two-Dimensional Ti3C2. Cryst. Res. Technol. 2014, 49, 926–932. [Google Scholar] [CrossRef]
- Feng, Q.; Deng, F.; Li, K.; Dou, M.; Zou, S.; Huang, F. Enhancing the Tribological Performance of Ti3C2 MXene Modified with Tetradecylphosphonic Acid. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126903. [Google Scholar] [CrossRef]
- Gao, J.; Du, C.-F.; Zhang, T.; Zhang, X.; Ye, Q.; Liu, S.; Liu, W. Dialkyl Dithiophosphate-Functionalized Ti3C2Tx MXene Nanosheets as Effective Lubricant Additives for Antiwear and Friction Reduction. ACS Appl. Nano Mater. 2021, 4, 11080–11087. [Google Scholar] [CrossRef]
- Zhang, F.X.; Su, X.; Tang, G.G.; Xu, J. Construction and Tribological Behaviors of MXenes/MoS2 Heterojunction with 2D/2D Structure in Liquid Paraffin. Chalcogenide Lett. 2021, 18, 225–235. [Google Scholar] [CrossRef]
- Feng, P.; Ren, Y.; Li, Y.; He, J.; Zhao, Z.; Ma, X.; Fan, X.; Zhu, M. Synergistic Lubrication of Few-Layer Ti3C2Tx/MoS2 Heterojunction as a Lubricant Additive. Friction 2022, 10, 2018–2032. [Google Scholar] [CrossRef]
- Zhou, C.; Li, Z.; Liu, S.; Ma, L.; Zhan, T.; Wang, J. Synthesis of MXene-Based Self-Dispersing Additives for Enhanced Tribological Properties. Tribol. Lett. 2022, 70, 63. [Google Scholar] [CrossRef]
- Jazaa, Y.; Lan, T.; Padalkar, S.; Sundararajan, S. The Effect of Agglomeration Reduction on the Tribological Behavior of WS2 and MoS2 Nanoparticle Additives in the Boundary Lubrication Regime. Lubricants 2018, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.B.; Zhang, S.W. The Tribological Properties of Multi-Layered Graphene as Additives of PAO2 Oil in Steel-Steel Contacts. Lubricants 2016, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Azman, S.S.N.; Zulkifli, N.W.M.; Masjuki, H.; Gulzar, M.; Zahid, R. Study of Tribological Properties of Lubricating Oil Blend Added with Graphene Nanoplatelets. J. Mater. Res. 2016, 31, 1932–1938. [Google Scholar] [CrossRef]
- Cai, Z.B.; Zhao, L.; Zhang, X.; Yue, W.; Zhu, M.H. Combined Effect of Textured Patterns and Graphene Flake Additives on Tribological Behavior under Boundary Lubrication. PLoS ONE 2016, 11, e0152143. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Cai, Z.B.; Shen, M.X.; Li, Z.Y.; Zhu, M.H. Investigation of the Tribology Behaviour of the Graphene Nanosheets as Oil Additives on Textured Alloy Cast Iron Surface. Appl. Surf. Sci. 2016, 387, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Kiu, S.S.K.; Yusup, S.; Soon, C.V.; Arpin, T.; Samion, S.; Kamil, R.N.M. Tribological Investigation of Graphene as Lubricant Additive in Vegetable Oil. J. Phys. Sci. 2017, 28, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, Q.; Dong, G. Self-Assembly Membrane on Textured Surface for Enhancing Lubricity of Graphene Oxide Nano-Additive. Appl. Surf. Sci. 2020, 505, 144572. [Google Scholar] [CrossRef]
- Wu, P.; Chen, X.; Zhang, C.; Luo, J. Synergistic Tribological Behaviors of Graphene Oxide and Nanodiamond as Lubricating Additives in Water. Tribol. Int. 2019, 132, 177–184. [Google Scholar] [CrossRef]
- Yang, J.; Xia, Y.; Song, H.; Chen, B.; Zhang, Z. Synthesis of the Liquid-like Graphene with Excellent Tribological Properties. Tribol. Int. 2017, 105, 118–124. [Google Scholar] [CrossRef]
- Gao, T.; Li, C.; Zhang, Y.; Yang, M.; Jia, D.; Jin, T.; Hou, Y.; Li, R. Dispersing Mechanism and Tribological Performance of Vegetable Oil-Based CNT Nanofluids with Different Surfactants. Tribol. Int. 2019, 131, 51–63. [Google Scholar] [CrossRef]
Mechanical Properties | Value |
---|---|
Hardness (H) | 1 HRC |
Density (ρ) | 7.79 gm/cm3 |
Surface roughness (Ra) | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaharin, H.A.; Ghazali, M.J.; Khalid, M.; Nagarajan, T.; Pin, W.W.; Ezzah, F.; Gerard, O.; Walvekar, R.; Rasheed, A.K. Tribological, Oxidation and Thermal Analysis of Advanced Microwave–Hydrothermal Synthesised Ti3C2Tx MXene as Additives in Outboard Engine Oil. Lubricants 2023, 11, 264. https://doi.org/10.3390/lubricants11060264
Zaharin HA, Ghazali MJ, Khalid M, Nagarajan T, Pin WW, Ezzah F, Gerard O, Walvekar R, Rasheed AK. Tribological, Oxidation and Thermal Analysis of Advanced Microwave–Hydrothermal Synthesised Ti3C2Tx MXene as Additives in Outboard Engine Oil. Lubricants. 2023; 11(6):264. https://doi.org/10.3390/lubricants11060264
Chicago/Turabian StyleZaharin, Haizum Aimi, Mariyam Jameelah Ghazali, Mohammad Khalid, Thachnatharen Nagarajan, Wong Weng Pin, Farah Ezzah, Ong Gerard, Rashmi Walvekar, and Abdul Khaliq Rasheed. 2023. "Tribological, Oxidation and Thermal Analysis of Advanced Microwave–Hydrothermal Synthesised Ti3C2Tx MXene as Additives in Outboard Engine Oil" Lubricants 11, no. 6: 264. https://doi.org/10.3390/lubricants11060264
APA StyleZaharin, H. A., Ghazali, M. J., Khalid, M., Nagarajan, T., Pin, W. W., Ezzah, F., Gerard, O., Walvekar, R., & Rasheed, A. K. (2023). Tribological, Oxidation and Thermal Analysis of Advanced Microwave–Hydrothermal Synthesised Ti3C2Tx MXene as Additives in Outboard Engine Oil. Lubricants, 11(6), 264. https://doi.org/10.3390/lubricants11060264