Combined Effect of Fluid Cavitation and Inertia on the Pressure Buildup of Parallel Textured Surfaces
Abstract
:1. Introduction
2. Theoretical Models
2.1. Geometrical Model
2.2. Mathematical Model
- The roughness of parallel surfaces is neglected, and the slip flow between the surfaces and the fluid film are not considered.
- The flow regime of the fluid film is laminar, as calculated from Re.
2.2.1. Mixture Mass and Momentum Equations
2.2.2. Mass Transfer Equations
2.2.3. Cavitation Source Term: RPE Model
2.2.4. Boundary Conditions
3. Numerical Procedure
- (1).
- Input geometric and operating parameters.
- (2).
- Give initial values X(0) (p(0), qx(0), qy(0), FL(0)) to unknown variables X (p, qx, qy, FL), and impose pre-boundary conditions.
- (3).
- Calculate the physical property parameters ρ, μ and flow characteristic parameters Ixx, Ixy, and Iyy.
- (4).
- Solve Equation (38) and obtain the pressure and flow rate distributions.
- (5).
- Solve Equation (39) based on step (4) and obtain the liquid volume fraction distribution.
- (6).
- Check the convergence criterion. If the unknowns meet the tolerance, end the iteration; otherwise, go to step (3) and repeat the procedure.
- (7).
- Output results and post-processing.
4. Results and Discussion
4.1. Validation
4.2. Effect of Re
4.3. Effect of pc
4.4. Effect of Sr, h1 and Shapes
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Ŕb | Dynamic radius of cavitation bubbles, m | Re | Reynolds number, Re = ρLu0h0/μL |
C1, C2 | Empirical coefficient of vapor liquid transition | S | Cavitation source term, kg/(m3∙s) |
FG, FL | Vapor and liquid volume fraction per unit volume | T | Comprehensive coefficient |
Fo | Load-carrying capacity, N | u | Velocity in x direction, m/s |
h | Fluid film thickness, m | u0 | Sliding velocity in x direction, m/s |
h0, h1 | Gap thickness and square recess depth, m | v | Velocity in y direction, m/s |
Ixx, Ixy, Iyy | Flow characteristic parameters, m3/s2 | v0 | Sliding velocity in y direction, m/s |
lx, ly | Unit vectors in x and y directions | VG, VL | Vapor and liquid volume |
N | Number of initial bubbles per unit volume | w | Velocity in z direction, m/s |
p | Fluid film pressure, Pa | W0, W1 | Slider and square recess length, m |
pa, pc | Ambient pressure and cavitation pressure, Pa | x, y, z | Cartesian coordinate, m |
Q | Flow rate, m3/s | λF, λqp | Downhill factors |
qx, qy | Flow rates of unit length in x and y directions, m2/s | μ, μG, μ L | Mixture, vapor and liquid dynamic viscosity, Pa∙s |
Rb | Bubbles initial average radius, m | ρ, ρG, ρ L | Mixture, vapor and liquid density, kg/m3 |
References
- Braun, M.J.; Hannon, W.M. Cavitation formation and modelling for fluid film bearings: A review. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2010, 224, 839–863. [Google Scholar] [CrossRef]
- Salant, R.F.; Homiller, S.J. Stiffness and leakage in spiral groove upstream pumping mechanical seals. Tribol. Trans. 1993, 36, 55–60. [Google Scholar] [CrossRef]
- Etsion, I.; Burstein, L. A model for mechanical seals with regular microsurface structure. Tribol. Trans. 1996, 39, 677–683. [Google Scholar] [CrossRef]
- Qiu, Y.Y.; Khonsari, M.M. Performance analysis of full-film textured surfaces with consideration of roughness effects. J. Tribol. 2011, 133, 021704. [Google Scholar] [CrossRef]
- Ma, X.; Meng, X.; Wang, Y.; Peng, X. Suction effect of cavitation in the reverse-spiral-grooved mechanical face seals. Tribol. Int. 2019, 132, 142–153. [Google Scholar] [CrossRef]
- Lin, Q.; Bao, Q.; Li, K.; Khonsari, M.M.; Zhao, H. An investigation into the transient behavior of journal bearing with surface texture based on fluid-structure interaction approach. Tribol. Int. 2018, 118, 246–255. [Google Scholar] [CrossRef]
- Han, J.; Fang, L.; Sun, J.P.; Ge, S.R. Hydrodynamic lubrication of microdimple textured surface using three-dimensional CFD. Tribol. Trans. 2010, 53, 860–870. [Google Scholar] [CrossRef]
- Han, J.; Fang, L.; Sun, J.P.; Wang, Y.Q.; Ge, S.R.; Zhu, H. Hydrodynamic lubrication of surfaces with asymmetric microdimple. Tribol. Trans. 2011, 54, 607–615. [Google Scholar] [CrossRef]
- Ma, X.; Meng, X.; Wang, Y.; Liang, Y.; Peng, X. Fluid inertia effect on spiral-grooved mechanical face seals considering cavitation effects. Tribol. Trans. 2021, 64, 367–380. [Google Scholar] [CrossRef]
- Ausas, R.; Ragot, P.; Leiva, J.; Jai, M.; Bayada, G.; Buscaglia, G.C. The impact of the cavitation model in the analysis of microtextured lubricated journal bearings. J. Tribol. 2007, 129, 868–875. [Google Scholar] [CrossRef]
- Qiu, Y.Y.; Khonsari, M.M. On the prediction of cavitation in dimples using a mass-conservative algorithm. J. Tribol. 2009, 131, 041702. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Meng, Y.G. Direct observation of cavitation phenomenon and hydrodynamic lubrication analysis of textured surfaces. Tribol. Lett. 2012, 46, 147–158. [Google Scholar] [CrossRef]
- Singhal, A.K.; Athavale, M.M.; Li, H.; Jiang, Y. Mathematical basis and validation of the full cavitation model. J. Fluids Eng. 2002, 124, 617–624. [Google Scholar] [CrossRef]
- Bakir, F.; Rey, R.; Gerber, A.G.; Belamri, T.; Hutchinson, B. Numerical and experimental investigations of the cavitating behavior of an inducer. Int. J. Rotating Mach. 2004, 10, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Plesset, M.S. The dynamics of cavitation bubbles. J. Appl. Mech. 1949, 16, 277–282. [Google Scholar] [CrossRef]
- Morris, N.J.; Shahmohamadi, H.; Rahmani, R.; Rahnejat, H.; Garner, C.P. Combined experimental and multiphase computational fluid dynamics analysis of surface textured journal bearings in mixed regime of lubrication. Lubr. Sci. 2018, 30, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Shahmohamadi, H.; Rahmani, R.; Rahnejat, H.; Garner, C.P.; Dowson, D. Big end bearing losses with thermal cavitation flow under cylinder deactivation. Tribol. Lett. 2015, 57, 2. [Google Scholar] [CrossRef] [Green Version]
- Dhande, D.Y.; Pande, D.W. Multiphase flow analysis of hydrodynamic journal bearing using CFD coupled fluid structure interaction considering cavitation. J. King Saud Univ.-Eng. Sci. 2018, 30, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Cupillard, S.; Glavatskih, S.; Cervantes, M.J. Computational fluid dynamics analysis of a journal bearing with surface texturing. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2008, 222, 97–107. [Google Scholar] [CrossRef]
- Mishra, S.; Choudhury, A.; Sahu, S. CFD investigation of influences of reverse textures on bearing surface of a journal bearing. J. Appl. Fluid Mech. 2014, 7, 395–399. [Google Scholar]
- Song, Y.; Gu, C.W. Development and validation of a three-dimensional computational fluid dynamics analysis for journal bearings considering cavitation and conjugate heat transfer. J. Eng. Gas Turbines Power 2015, 137, 122502. [Google Scholar] [CrossRef]
- Wang, T.; Huang, W.F.; Liu, Y.; Liu, X.F.; Wang, Y.M. A homogeneous phase change model for two-phase mechanical seals with three-dimensional face structures. J. Tribol. 2014, 136, 041708. [Google Scholar] [CrossRef]
- Constantinescu, V.N.; Galetuse, S. Operating characteristics of journal bearings in turbulent inertial flow. J. Lubr. Technol. 1982, 104, 173–179. [Google Scholar] [CrossRef]
- Brunetière, N.; Tournerie, B. Finite element solution of inertia influenced flow in thin fluid films. J. Tribol. 2007, 129, 876–886. [Google Scholar] [CrossRef]
- Wang, T.; Huang, W.F.; Liu, X.F.; Li, Y.J.; Wang, Y.M. Experimental study of two-phase mechanical face seals with laser surface texturing. Tribol. Int. 2014, 72, 90–97. [Google Scholar] [CrossRef]
- Li, W.; Stephens, L.S.; Wenk, J.F. Experimental benchmarking of the numerical model of a radial lip seal with a surface textured shaft. Tribol. Trans. 2013, 56, 75–87. [Google Scholar] [CrossRef]
- Rao, T.V.V.L.N.; Rani, A.M.A.; Nagarajan, T.; Hashim, F.M. Analysis of slider and journal bearing using partially textured slip surface. Tribol. Int. 2012, 56, 121–128. [Google Scholar] [CrossRef]
- Cross, A.T.; Sadeghi, F.; Rateick, G.R.; Rowan, S.; Laboda, D. Temperature distribution in pocketed thrust washers. Tribol. Trans. 2015, 58, 31–43. [Google Scholar] [CrossRef]
- Tomanik, E. Modelling the hydrodynamic support of cylinder bore and piston rings with laser textured surfaces. Tribol. Int. 2013, 59, 90–96. [Google Scholar] [CrossRef]
- Morgut, M.; Nobile, E.; Bilus, I. Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil. Int. J. Multiph. Flow 2011, 37, 620–626. [Google Scholar] [CrossRef]
- Jakobsson, B.; Floberg, L. The Finite Journal Bearing, Considering Vaporization; Chalmers Tekniska Högskolas Handlingar: Gothenburg, Sweden, 1957. [Google Scholar]
- Meng, X.K.; Bai, S.X.; Peng, X.D. Lubrication film flow control by oriented dimples for liquid lubricated mechanical seals. Tribol. Int. 2014, 77, 132–141. [Google Scholar] [CrossRef]
- Etsion, I.; Ludwig, L.P. Observation of pressure variation in the cavitation region of submerged journal bearings. ASME J. Lubr. Tech. 1982, 104, 157–163. [Google Scholar] [CrossRef]
- Sun, D.C.; Brewe, D.E. A high-speed photography study of cavitation in a dynamically loaded journal bearing. ASME J. Tribol. 1991, 113, 287–292. [Google Scholar] [CrossRef]
- Sun, D.C.; Brewe, D.E.; Abel, P.B. Simultaneous pressure measurement and high-speed photography study of cavitation in a dynamically loaded journal bearing. ASME J. Tribol. 1993, 115, 88–95. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Textured surface cell side length, W0/(mm) | 6 |
Recess size length, W1/(mm) | 4 |
Gap thickness, h0/(μm) | 50 |
Recess depth, h1/(μm) | 4 |
Ambient pressure, pa/(MPa) | 0.1 |
Cavitation pressure, pc/(MPa) | 0.095 |
Dynamic viscosity of liquid, μL/(Pa·s) | 0.0127 |
Liquid density, ρL/(kg/m3) | 840 |
Reynolds number, Re | 165.35 |
Square | Circle | Triangle | ||
---|---|---|---|---|
∆p | (pmax IC − pmax C)/ pmax C | 39.42% | 38.88% | 39.10% |
(pmax I − pmax RE)/ pmax RE | 8.38% | 8.94% | 11.11% | |
LCC | IC | 7.3% | 7% | 4.7% |
I | 0.6% | 0.43% | 1.4% | |
C | ≈0 | 0.4% | ≈0 | |
RE | ≈0 | ≈0 | ≈0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X. Combined Effect of Fluid Cavitation and Inertia on the Pressure Buildup of Parallel Textured Surfaces. Lubricants 2023, 11, 270. https://doi.org/10.3390/lubricants11070270
Ma X. Combined Effect of Fluid Cavitation and Inertia on the Pressure Buildup of Parallel Textured Surfaces. Lubricants. 2023; 11(7):270. https://doi.org/10.3390/lubricants11070270
Chicago/Turabian StyleMa, Xuezhong. 2023. "Combined Effect of Fluid Cavitation and Inertia on the Pressure Buildup of Parallel Textured Surfaces" Lubricants 11, no. 7: 270. https://doi.org/10.3390/lubricants11070270
APA StyleMa, X. (2023). Combined Effect of Fluid Cavitation and Inertia on the Pressure Buildup of Parallel Textured Surfaces. Lubricants, 11(7), 270. https://doi.org/10.3390/lubricants11070270