The Effect of Nanoparticle Additives on the Lubricity of Diesel and Biodiesel Fuels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
2.2. Preparation of Fuel Samples
2.3. Physical Properties
2.4. Lubricity Evaluation
3. Results and Discussions
3.1. Friction Evaluation
- Biodiesel ≤ CNT ≤ CPL < Al2O3 < CeO2 < ZnO;
- Al2O3 < CeO2 < CNT ≤ ZnO < diesel fuel < CPL.
3.2. Wear Evaluation
- Al2O3 = ZnO = CNT < CPL < CeO2 < biodiesel;
- CNT = ZnO < diesel fuel < CeO2 < Al2O3 < CPL.
3.3. Analysis of the Worn Surfaces
4. Conclusions
- The different natures of investigated fuels resulted in different lubricity responses when nanoparticles were introduced;
- Nanoparticle-free biodiesel possesses very low friction. Introducing nanoparticles resulted in higher friction. In contrast, nano additives improved the wear-reduction ability of biodiesel;
- Nanoparticle-free diesel fuel showed higher friction, which was reduced by adding nanoparticles. No wear improvement was observed in the case of diesel fuel modification with nanoparticles. It must be noted that the introduction of carbon nanoplatelets and aluminum oxide nanoparticles increased the wear;
- Considering the lubricity requirements of the EN 590 standard, any of the investigated nanoparticles could be used to modify fuels for a diesel-fueled IC engine.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kegl, B. Effects of Biodiesel on Emissions of a Bus Diesel Engine. Bioresour. Technol. 2008, 99, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Kalghatgi, G. Is It Really the End of Internal Combustion Engines and Petroleum in Transport? Appl. Energy 2018, 225, 965–974. [Google Scholar] [CrossRef]
- Helmers, E.; Leitão, J.; Tietge, U.; Butler, T. CO2-Equivalent Emissions from European Passenger Vehicles in the Years 1995–2015 Based on Real-World Use: Assessing the Climate Benefit of the European “Diesel Boom”. Atmos. Environ. 2019, 198, 122–132. [Google Scholar] [CrossRef]
- Kegl, T.; Kovač Kralj, A.; Kegl, M.; Kegl, B. Diesel Engines. In Nanomaterials for Environmental Application; Green Energy and Technology; Springer: Cham, Switzerland, 2020; pp. 5–27. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Singh, A.P.; Maurya, R.K.; Chandra Shukla, P.; Dhar, A.; Srivastava, D.K. Combustion Characteristics of a Common Rail Direct Injection Engine Using Different Fuel Injection Strategies. Int. J. Therm. Sci. 2018, 134, 475–484. [Google Scholar] [CrossRef]
- Thangaraja, J.; Kannan, C. Effect of Exhaust Gas Recirculation on Advanced Diesel Combustion and Alternate Fuels—A Review. Appl. Energy 2016, 180, 169–184. [Google Scholar] [CrossRef]
- García, A.; Monsalve-Serrano, J.; Villalta, D.; Lago Sari, R. Performance of a Conventional Diesel Aftertreatment System Used in a Medium-Duty Multi-Cylinder Dual-Mode Dual-Fuel Engine. Energy Convers. Manag. 2019, 184, 327–337. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Xu, B.; Yuan, M. Nanofluid Research and Applications: A Review. Int. Commun. Heat Mass Transf. 2021, 127, 105543. [Google Scholar] [CrossRef]
- Kegl, B. Influence of Biodiesel on Engine Combustion and Emission Characteristics. Appl. Energy 2011, 88, 1803–1812. [Google Scholar] [CrossRef]
- Khond, V.W.; Kriplani, V.M. Effect of Nanofluid Additives on Performances and Emissions of Emulsified Diesel and Biodiesel Fueled Stationary CI Engine: A Comprehensive Review. Renew. Sustain. Energy Rev. 2016, 59, 1338–1348. [Google Scholar] [CrossRef]
- Shaafi, T.; Sairam, K.; Gopinath, A.; Kumaresan, G.; Velraj, R. Effect of Dispersion of Various Nanoadditives on the Performance and Emission Characteristics of a CI Engine Fuelled with Diesel, Biodiesel and Blends—A Review. Renew. Sustain. Energy Rev. 2015, 49, 563–573. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Nik-Ghazali, N.-N.; Abul Kalam, M.; Badruddin, I.A.; Banapurmath, N.R.; Akram, N. The Effect of Nano-Additives in Diesel-Biodiesel Fuel Blends: A Comprehensive Review on Stability, Engine Performance and Emission Characteristics. Energy Convers. Manag. 2018, 178, 146–177. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Gupta, J.G.; Dhar, A. Potential and Challenges for Large-Scale Application of Biodiesel in Automotive Sector. Prog. Energy Combust. Sci. 2017, 61, 113–149. [Google Scholar] [CrossRef]
- EL-Seesy, A.I.; Waly, M.S.; El-Batsh, H.M.; El-Zoheiry, R.M. Enhancement of the Diesel Fuel Characteristics by Using Nitrogen-Doped Multi-Walled Carbon Nanotube Additives. Process Saf. Environ. Prot. 2023, 171, 561–577. [Google Scholar] [CrossRef]
- Suhel, A.; Abdul Rahim, N.; Abdul Rahman, M.R.; Bin Ahmad, K.A.; Khan, U.; Teoh, Y.H.; Zainal Abidin, N. Impact of ZnO Nanoparticles as Additive on Performance and Emission Characteristics of a Diesel Engine Fueled with Waste Plastic Oil. Heliyon 2023, 9, e14782. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kumar Sharma, S.; Ojha, K.V. Review of Bio-Fuel and Nano-Particles as an Additive in Diesel Fuelled Engine. Mater. Today Proc. 2022, 64, 1367–1370. [Google Scholar] [CrossRef]
- Ettefaghi, E.; Ghobadian, B.; Rashidi, A.; Najafi, G.; Khoshtaghaza, M.H.; Rashtchi, M.; Sadeghian, S. A Novel Bio-Nano Emulsion Fuel Based on Biodegradable Nanoparticles to Improve Diesel Engines Performance and Reduce Exhaust Emissions. Renew. Energy 2018, 125, 64–72. [Google Scholar] [CrossRef]
- Kegl, T.; Kovač Kralj, A.; Kegl, B.; Kegl, M. Nanomaterials as Fuel Additives in Diesel Engines: A Review of Current State, Opportunities, and Challenges. Prog. Energy Combust. Sci. 2021, 83, 100897. [Google Scholar] [CrossRef]
- Tomar, M.; Kumar, N. Effect of Multi-Walled Carbon Nanotubes and Alumina Nano-Additives in a Light Duty Diesel Engine Fuelled with Schleichera Oleosa Biodiesel Blends. Sustain. Energy Technol. Assess. 2020, 42, 100833. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, Y.; Zheng, X.; Dearn, K.D.; Xu, H.; Hu, X. Synthesis and Tribological Studies of Nanoparticle Additives for Pyrolysis Bio-Oil Formulated as a Diesel Fuel. Energy 2015, 83, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Loo, D.L.; Teoh, Y.H.; How, H.G.; Le, T.D.; Nguyen, H.T.; Rashid, T.; Pottmaier, D.; Sher, F. Effect of Nanoparticles Additives on Tribological Behaviour of Advanced Biofuels. Fuel 2023, 334, 126798. [Google Scholar] [CrossRef]
- Prabu, A. Nanoparticles as Additive in Biodiesel on the Working Characteristics of a DI Diesel Engine. Ain Shams Eng. J. 2018, 9, 2343–2349. [Google Scholar] [CrossRef]
- Chen, A.F.; Akmal Adzmi, M.; Adam, A.; Othman, M.F.; Kamaruzzaman, M.K.; Mrwan, A.G. Combustion Characteristics, Engine Performances and Emissions of a Diesel Engine Using Nanoparticle-Diesel Fuel Blends with Aluminium Oxide, Carbon Nanotubes and Silicon Oxide. Energy Convers. Manag. 2018, 171, 461–477. [Google Scholar] [CrossRef]
- Nanthagopal, K.; Ashok, B.; Tamilarasu, A.; Johny, A.; Mohan, A. Influence on the Effect of Zinc Oxide and Titanium Dioxide Nanoparticles as an Additive with Calophyllum Inophyllum Methyl Ester in a CI Engine. Energy Convers. Manag. 2017, 146, 8–19. [Google Scholar] [CrossRef]
- Ooi, J.B.; Ismail, H.M.; Tan, B.T.; Wang, X. Effects of Graphite Oxide and Single-Walled Carbon Nanotubes as Diesel Additives on the Performance, Combustion, and Emission Characteristics of a Light-Duty Diesel Engine. Energy 2018, 161, 70–80. [Google Scholar] [CrossRef]
- Sukjit, E.; Dearn, K.D. Enhancing the Lubricity of an Environmentally Friendly Swedish Diesel Fuel MK1. Wear 2011, 271, 1772–1777. [Google Scholar] [CrossRef]
- Sudan Reddy Dandu, M.; Nanthagopal, K. Tribological Aspects of Biofuels—A Review. Fuel 2019, 258, 116066. [Google Scholar] [CrossRef]
- Lai, C.M.; Loo, D.L.; Teoh, Y.H.; How, H.G.; Le, T.D.; Nguyen, H.T.; Ghfar, A.A.; Sher, F. Optimization and Performance Characteristics of Diesel Engine Using Green Fuel Blends with Nanoparticles Additives. Fuel 2023, 347, 128462. [Google Scholar] [CrossRef]
- Hu, J.; Du, Z.; Li, C.; Min, E. Study on the Lubrication Properties of Biodiesel as Fuel Lubricity Enhancers. Fuel 2005, 84, 1601–1606. [Google Scholar] [CrossRef]
- Suarez, P.A.Z.; Moser, B.R.; Sharma, B.K.; Erhan, S.Z. Comparing the Lubricity of Biofuels Obtained from Pyrolysis and Alcoholysis of Soybean Oil and Their Blends with Petroleum Diesel. Fuel 2009, 88, 1143–1147. [Google Scholar] [CrossRef]
- Blau, P.J. Friction Science and Technology From Concepts to Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9780367386665. [Google Scholar]
- Hanke, S.; Samerski, I.; Schöfer, J.; Fischer, A. The Role of Wear Particles under Multidirectional Sliding Wear. Wear 2009, 267, 1319–1324. [Google Scholar] [CrossRef]
- Sanes, J.; Avilés, M.D.; Saurín, N.; Espinosa, T.; Carrión, F.J.; Bermúdez, M.D. Synergy between Graphene and Ionic Liquid Lubricant Additives. Tribol. Int. 2017, 116, 371–382. [Google Scholar] [CrossRef]
Property | Standard | Value |
---|---|---|
Diesel Fuel | ||
Kinematic viscosity @ 40 °C, cSt | EN ISO 3140 | 2.88 |
Density @ 15 °C, kg/m3 | EN ISO 3675 | 835 |
Cetane number | EN ISO 4264 | 55.5 |
Sulphur, mg/kg | EN ISO 20846 | 6.5 |
Content of polycyclic aromatic carbohydrates, % | EN 12916 | 1.1 |
Biodiesel | ||
Kinematic viscosity @ 40 °C, cSt | EN ISO 3140 | 4.47 |
Density @ 15 °C, kg/m3 | EN ISO 3675 | 883 |
Cetane number | EN ISO 5156 | 54.3 |
Sulphur, mg/kg | EN ISO 20846 | <3 |
Acid number, mg KOH/g | EN 14104 | 0.16 |
Amount of monoglycerides, % | EN 14105 | 0.2 |
Amount of diglycerides, % | EN 14105 | 0.13 |
Amount of triglycerides, % | EN 14105 | 0.14 |
Nanoparticles | Carbon Nanoplatelets, CPL | Carbon Nanotube, CNT | Aluminum Oxide, Al2O3 | Zink Oxide, ZnO | Cerium (IV) Oxide, CeO2 |
---|---|---|---|---|---|
CAS No. | 308063-67-4 | 308068-56-6 | 1344-28-1 | 1314-13-2 | 1306-38-3 |
Appearance | Pyrolytically stripped platelets (conical) >98% carbon basis. D × L 100 nm × 20–200 mum | Multi-walled >90% carbon basis. D × L 110–170 nm × 5–9 mum | Dispersion <50 nm, 20 wt. % in isopropanol | Nanopowder <100 nm particle size | Nanopowde <25 nm particle size |
Density, g/cm3 | 1.9 | 1.7~2.1 | 3.97 | 5.60 | 7.13 |
Specific surface area (m2/g) | 54 | 12.8 | 150 | 10–25 | 30–60 |
Melting point, °C | 3652–3697 | 3652–3697 | 2045 | 1975 | 2600 |
Fuel Sample | Density, 15 °C, g/cm3 | Kinematic Viscosity, 40 °C, cSt |
---|---|---|
Diesel Fuel | ||
BF | 835 | 2.85 |
CPL | 824 | 2.89 |
CNT | 831 | 2.90 |
Al2O3 | 841 | 2.81 |
ZnO | 843 | 2.75 |
CeO2 | 840 | 2.82 |
Biodiesel | ||
BF | 885 | 4.49 |
CPL | 882 | 4.58 |
CNT | 879 | 4.51 |
Al2O3 | 880 | 4.41 |
ZnO | 887 | 4.50 |
CeO2 | 891 | 4.39 |
Parameter | Units | Value |
---|---|---|
The volume of the fuel | mL | 2 |
Stroke length | mm | 1 |
Frequency | Hz | 50 |
Test temperature | °C | 60 |
Load | g | 200 |
Test duration | min | 75 |
Relative humidity | % | 42 |
Fuel Sample | Ra, µm | Rz, µm |
Diesel Fuel | ||
BF | 0.015 | 0.070 |
CPL | 0.018 | 0.093 |
CNT | 0.009 | 0.048 |
Al2O3 | 0.088 | 0.397 |
ZnO | 0.012 | 0.062 |
CeO2 | 0.011 | 0.051 |
Biodiesel | ||
BF | 0.012 | 0.084 |
CPL | 0.020 | 0.102 |
CNT | 0.026 | 0.127 |
Al2O3 | 0.039 | 0.178 |
ZnO | 0.024 | 0.111 |
CeO2 | 0.021 | 0.103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jokubynienė, V.; Slavinskas, S.; Kreivaitis, R. The Effect of Nanoparticle Additives on the Lubricity of Diesel and Biodiesel Fuels. Lubricants 2023, 11, 290. https://doi.org/10.3390/lubricants11070290
Jokubynienė V, Slavinskas S, Kreivaitis R. The Effect of Nanoparticle Additives on the Lubricity of Diesel and Biodiesel Fuels. Lubricants. 2023; 11(7):290. https://doi.org/10.3390/lubricants11070290
Chicago/Turabian StyleJokubynienė, Vida, Stasys Slavinskas, and Raimondas Kreivaitis. 2023. "The Effect of Nanoparticle Additives on the Lubricity of Diesel and Biodiesel Fuels" Lubricants 11, no. 7: 290. https://doi.org/10.3390/lubricants11070290
APA StyleJokubynienė, V., Slavinskas, S., & Kreivaitis, R. (2023). The Effect of Nanoparticle Additives on the Lubricity of Diesel and Biodiesel Fuels. Lubricants, 11(7), 290. https://doi.org/10.3390/lubricants11070290