An Analysis of Edge Chipping in LiTaO3 Wafer Grinding Using a Scratch Test and FEA Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Scratch Test
2.3. Finite Element Analysis (FEA)
3. Results and Discussion
3.1. Scratch Test
3.1.1. Part 1: Scratch Test Regarding Normal Force
3.1.2. Part 2: Scratch Test Regarding Edge Shape
3.2. Finite Element Analysis (FEA)
4. Conclusions
- 1.
- Scratch tests regarding the constant normal force applied to the indenter were conducted on the LiTaO3 wafer, and it was confirmed that the wafer fractured at 6.0 N. The constant normal force for the scratch test regarding the edge shape was determined to be 4.0 N.
- 2.
- The scratch test results regarding the wafer edge shape enabled a qualitative evaluation of edge chipping, and it was found that the C-cut edge shape was superior among the C-cut, trimmed, and thinned edge (half C-cut) shapes.
- 3.
- The effective edge shapes for reducing the edge chipping were determined using the ANSYS Transient Structural. Plastic deformation was used to estimate the fracture of the LiTaO3 wafers, and the results were visualized through postprocessing.
- 4.
- Breakage occurred at edges of 80, 120, and 150 μm for the C-cut, trimmed, and thinned edge shapes, respectively. Considering that the C-cut edge shape becomes a thinned edge shape through grinding, the trimmed edge shape was proposed as the most effective edge shape for edge chipping.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oleinik, A.N.; Gilts, M.E.; Karataev, P.V.; Klenin, A.A.; Kubankin, A.S.; Shapovalov, P.G.I.-V. Curve of the Electron Flow Generated during a Pyroelectric Effect in Lithium Tantalate Single Crystal in Vacuum Conditions. Europhysics Lett. 2023, 142, 34001. [Google Scholar] [CrossRef]
- Lyu, T.; Dorenbos, P.; Wei, Z. Designing LiTaO3:Ln3+,Eu3+ (Ln = Tb or Pr) Perovskite Dosimeter with Excellent Charge Carrier Storage Capacity and Stability for Anti-Counterfeiting and Flexible X-Ray Imaging. Chem. Eng. J. 2023, 461, 141685. [Google Scholar] [CrossRef]
- Jacob, S.; Pandey, S.; Del Moral, J.; Karimzadeh, A.; Gil-Rostra, J.; González-Elipe, A.R.; Borrás, A.; Winkler, A. Surface Acoustic Waves Equip Materials with Active Deicing Functionality: Unraveled Deicing Mechanisms and Application to Centimeter Scale Transparent Surfaces. Adv. Mater. Technol. 2022, 2300263. [Google Scholar] [CrossRef]
- He, A.; Huang, H.; Zhou, L. Mechanical Properties and Deformation of LiTaO3 Single Crystals Characterised by Nanoindentation and Nanoscratch. Adv. Mater. Res. 2012, 565, 564–569. [Google Scholar] [CrossRef]
- Hang, W.; Zhou, L.; Zhang, K.; Shimizu, J.; Yuan, J. Study on Grinding of LiTaO3 Wafer Using Effective Cooling and Electrolyte Solution. Precis. Eng. 2016, 44, 62–69. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.; Li, H.; Yang, X.; Wei, W.; Yang, Z. Analysis of Main Physical Factors of Chemical Mechanical Polishing About Lithium Tantalate. In Proceedings of the 2021 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 14–15 March 2021; pp. 8–10. [Google Scholar] [CrossRef]
- Yuan, H.; Wei, X.; Du, H.W.; Hu, W.; Xiong, W. Influence of Polishing Parameters on Chemical Mechanical Polishing Processes of LiTaO3 Wafer. Key Eng. Mater. 2006, 315–316, 561–565. [Google Scholar] [CrossRef]
- Hang, W.; Huang, X.; Liu, M.; Ma, Y. On the Room-Temperature Creep Behavior and Its Correlation with Length Scale of a LiTaO3 Single Crystal by Spherical Nanoindentation. Materials 2019, 12, 4213. [Google Scholar] [CrossRef] [Green Version]
- Gruber, M.; Leitner, A.; Kiener, D.; Supancic, P.; Bermejo, R. Incipient Plasticity and Surface Damage in LiTaO3 and LiNbO3 Single Crystals. Mater. Des. 2018, 153, 221–231. [Google Scholar] [CrossRef]
- Hang, W.; Zhou, L.B.; Shimizu, J.; Yuan, J.L. Study on Thermal Influence of Grinding Process on LiTaO3. Adv. Mater. Res. 2013, 797, 252–257. [Google Scholar] [CrossRef]
- Wei, X.; Yuan, H.; Du, H.W.; Xiong, W.; Huang, R.W. Study on Chemical Mechanical Polishing Mechanism of LiTaO3 Wafer. Key Eng. Mater. 2006, 304–305, 310–314. [Google Scholar] [CrossRef]
- Hang, W.; Wei, L.; Debela, T.T.; Chen, H.; Zhou, L.; Yuan, J.; Ma, Y. Crystallographic Orientation Effect on the Polishing Behavior of LiTaO3 Single Crystal and Its Correlation with Strain Rate Sensitivity. Ceram. Int. 2022, 48, 7766–7777. [Google Scholar] [CrossRef]
- Gao, S.; Kang, R.; Dong, Z.; Zhang, B. Edge Chipping of Silicon Wafers in Diamond Grinding. Int. J. Mach. Tools Manuf. 2013, 64, 31–37. [Google Scholar] [CrossRef]
- Sun, J.; Qin, F.; Chen, P.; An, T.; Wang, Z. Edge Chipping of Silicon Wafers in Rotating Grinding. In Proceedings of the 2016 17th International Conference on Electronic Packaging Technology (ICEPT), Wuhan, China, 16–19 August 2016; pp. 1099–1103. [Google Scholar] [CrossRef]
- Juri, A.Z.; Belli, R.; Lohbauer, U.; Ebendorff-Heidepriem, H.; Yin, L. Edge Chipping Damage in Lithium Silicate Glass-Ceramics Induced by Conventional and Ultrasonic Vibration-Assisted Diamond Machining. Dent. Mater. 2023, 39, 557–567. [Google Scholar] [CrossRef]
- Hirobe, S.; Sato, Y.; Takato, Y.; Oguni, K. Numerical Analysis of Glass Edge Chipping by Impact Loading. Int. J. Fract. 2023. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, X.; Lu, C.; Liu, Y.; Zhang, T.; Ma, Y. Revealing the Plastic Mode of Time-Dependent Deformation of a LiTaO3 Single Crystal by Nanoindentation. Micromachines 2020, 11, 878. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Huang, X.; Song, Y.; Hang, W.; Zhang, T. Room-Temperature Creep Behavior and Activation Volume of Dislocation Nucleation in a LiTaO3. Materials 2019, 12, 1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.U. Surface Acoustic Wave Filter Theory. Korean Inst. Electr. Electron. Mater. Eng. 2000, 13, 8–13. [Google Scholar]
- Guo, Y.J.; Zhang, J.; Zhao, C.; Ma, J.Y.; Pang, H.F.; Hu, P.A.; Placido, F.; Gibson, D.; Zu, X.T.; Zu, H.Y.; et al. Characterization and Humidity Sensing of ZnO/42° YX LiTaO3 Love Wave Devices with ZnO Nanorods. Mater. Res. Bull. 2013, 48, 5058–5063. [Google Scholar] [CrossRef]
- Varshni, Y.P. Temperature Dependence of the Elastic Constants. Phys. Rev. B 1970, 2, 3952–3958. [Google Scholar] [CrossRef]
- Huo, Z.; Liu, T.; Li, T.; Wu, X.; Hu, J.; Zhang, X.; Zhong, H. A High Q and High Coupling SAW Resonator on Multilayer Polymide Substrate. In Proceedings of the 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 27–28 August 2021; pp. 849–853. [Google Scholar] [CrossRef]
- Kim, S.W.; Jeong, Y.J.; Lee, H.C. Effects of the Mixing Method and Sintering Temperature on the Characteristics of PZNN-PZT Piezoelectric Ceramic Materials. J. Korean Powder Met. Inst. 2018, 25, 487–493. [Google Scholar] [CrossRef]
- Guber, M.; Kraleva, I.; Supancic, P.; Bielen, J.; Kiener, D.; Bermejo, R. Strength Distribution and Fracture Analyses of LiNbO3 and LiTaO3 Single Crystals under Biaxial Loading. J. Eur. Ceram. Soc. 2017, 37, 4397–4406. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Zhu, W.; Li, J.; Jing, F. A Shock-Induced Phase Transformation in a LiTaO3 Crystal. J. Appl. Phys. 2007, 102, 083503. [Google Scholar] [CrossRef]
- Wort, C.J.H.; Balmer, R.S. Diamond as an Electronic Material. Mater. Today 2008, 11, 22–28. [Google Scholar] [CrossRef]
- Spear, K.E.; Dismukes, J.P. (Eds.) Synthetic Diamond: Emerging CVD Science and Technology, 25th ed.; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Julean, D. SPH Simulation of Single Grain Action in Grinding. MATEC Web Conf. 2017, 137. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Hou, Q.; Ma, T.; Zhao, T.; Pan, J. Analysis of the High-Efficiency and Low-Damage Abrasive Processing Mechanism for SiC Based on the SPH Simulation of Single-Grain Indentation and Scratching. AIP Adv. 2022, 12, 055001. [Google Scholar] [CrossRef]
- Mosavat, M.; Rahimi, A. Numerical-Experimental Study on Polishing of Silicon Wafer Using Magnetic Abrasive Finishing Process. Wear 2019, 424–425, 143–150. [Google Scholar] [CrossRef]
- Khodaii, J.; Adibi, H.; Barazandeh, F.; Solhtalab, A.; Rezaei, M.; Sarhan, A.A.D. Improvement of Surface Integrity in the Grinding of Bioceramic Partially Stabilized Zirconia Using Analytical, Numerical, and Experimental Methods. Ceram. Int. 2020, 46, 13784–13797. [Google Scholar] [CrossRef]
Material | SAW Velocity [m/s] | K2 [%] | TCD [ppm/°C] |
---|---|---|---|
112° X-cut LiTaO3 | 3248 | 0.75 | 18 |
36° Y-cut LiTaO3 | 4156 | 6.3 | 31.5 |
42° Y-cut LiTaO3 | 4224 | 7.8 | 35 |
Parameter | Value |
---|---|
Indenter geometry | Conical, 200-μm tip radius, 120-degree cone angle |
Scratching speed (mm/s) | 0.2 |
Normal load (N) | 3.0 to 6.0 |
Scratching length (mm) | 5 (Part 1) and 10 (Part 2) |
Material Properties | Value | |
---|---|---|
LiTaO3 | Density (g/mm3) | 7.64 |
Young’s Modulus (GPa) | 248 | |
Poisson’s ratio | 0.25 | |
Yield strength (MPa) | 2318 | |
Diamond indenter | Density (g/mm3) | 3.52 |
Young’s Modulus (GPa) | 1220 | |
Poisson’s ratio | 0.2 |
Boundary Condition | Value |
---|---|
Indenter velocity (mm/s) | 0.2 |
Normal force (N) | 4.0 |
Scratching length (mm) | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, H.; Han, S.; Lee, H. An Analysis of Edge Chipping in LiTaO3 Wafer Grinding Using a Scratch Test and FEA Simulation. Lubricants 2023, 11, 297. https://doi.org/10.3390/lubricants11070297
Hwang H, Han S, Lee H. An Analysis of Edge Chipping in LiTaO3 Wafer Grinding Using a Scratch Test and FEA Simulation. Lubricants. 2023; 11(7):297. https://doi.org/10.3390/lubricants11070297
Chicago/Turabian StyleHwang, Haeseong, Seungho Han, and Hyunseop Lee. 2023. "An Analysis of Edge Chipping in LiTaO3 Wafer Grinding Using a Scratch Test and FEA Simulation" Lubricants 11, no. 7: 297. https://doi.org/10.3390/lubricants11070297
APA StyleHwang, H., Han, S., & Lee, H. (2023). An Analysis of Edge Chipping in LiTaO3 Wafer Grinding Using a Scratch Test and FEA Simulation. Lubricants, 11(7), 297. https://doi.org/10.3390/lubricants11070297