A Data-Driven Approach to Estimate the Power Loss and Thermal Behaviour of Cylindrical Gearboxes under Transient Operating Conditions
Abstract
:1. Introduction
2. Method
- Power loss evaluation for a single operating condition.
- Deep neural network training.
- Insert the trained neural network into a thermal network.
3. Power Loss Predictions
3.1. -Gears Load-Dependent Losses
3.2. -Gears No-Load Losses (Spin Losses)
3.3. -Bearing Losses
3.4. : Seal Losses
3.5. Model Validation
4. Neural Network Predictors
5. Thermal Network
6. Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hohn, B.; Michaelis, K.; Vollmer, T. Thermal Rating of Gear Drives: Balance between Power Loss and Heat Dissipation; American Gear Manufacturers Association: Alexandria, VA, USA, 1996. [Google Scholar]
- Aziz, A.; Höhn, B.-R.; Michaelis, K.; Hinterstoißer, M. Optimization of gearbox efficiency. Goriva Maz. ČasopisTribol. Teh. Podmazivanja Primjen. Tekućih Plinovitih Goriva Inžinjerstvo Izgaranja 2009, 48, 441–461. [Google Scholar]
- Young, W.C.; Budynas, R.G. Roark’s Formulas for Stress and Strain; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Autiero, M.; Cera, M.; Cirelli, M.; Pennestrì, E.; Valentini, P.P. Review with Analytical-Numerical Comparison of Contact Force Models for Slotted Joints in Machines. Machines 2022, 10, 966. [Google Scholar] [CrossRef]
- Cirelli, M.; Valentini, P.P.; Pennestrì, E. A study of the non-linear dynamic response of spur gear using a multibody contact based model with flexible teeth. J. Sound Vib. 2019, 445, 148–167. [Google Scholar] [CrossRef]
- Pennestrì, E.; Freudenstein, F. The Mechanical Efficiency of Epicyclic Gear Trains. J. Mech. Des. 1993, 115, 645–651. [Google Scholar] [CrossRef]
- Esmail, E.L.; Pennestrì, E.; Cirelli, M. Power-Flow and Mechanical Efficiency Computation in Two-Degrees-of-Freedom Planetary Gear Units: New Compact Formulas. Appl. Sci. 2021, 11, 5991. [Google Scholar] [CrossRef]
- Changenet, C.; Oviedo-Marlot, X.; Velex, P. Power Loss Predictions in Geared Transmissions Using Thermal Networks-Applications to a Six-Speed Manual Gearbox. J. Mech. Des. 2006, 128, 618–625. [Google Scholar] [CrossRef]
- de Gevigney, J.D.; Changenet, C.; Ville, F.; Velex, P. Thermal modelling of a back-to-back gearbox test machine: Application to the FZG test rig. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 501–515. [Google Scholar] [CrossRef]
- Zhou, C.; Xing, M.; Wang, H.; Hu, B. A novel thermal network model for predicting the contact temperature of spur gears. Int. J. Therm. Sci. 2020, 161, 106703. [Google Scholar] [CrossRef]
- Goodfellow, I.; Yoshua, B.; Aaron, C. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Lee, S.-H.; Park, K.-P. Development of a Prediction Model for the Gear Whine Noise of Transmission Using Machine Learning. Int. J. Precis. Eng. Manuf. 2023, 1–11. [Google Scholar] [CrossRef]
- Karabacak, Y.E.; Baş, H. Experimental investigation of efficiency of worm gears and modeling of power loss through artificial neural networks. Measurement 2022, 202, 111756. [Google Scholar] [CrossRef]
- Kalay, O.C.; Karpat, E.; Dirik, A.E.; Karpat, F. A One-Dimensional Convolutional Neural Network-Based Method for Diagnosis of Tooth Root Cracks in Asymmetric Spur Gear Pairs. Machines 2023, 11, 413. [Google Scholar] [CrossRef]
- Wang, M.-H.; Chen, F.-H.; Lu, S.-D. Research on Fault Diagnosis of Wind Turbine Gearbox with Snowflake Graph and Deep Learning Algorithm. Appl. Sci. 2023, 13, 1416. [Google Scholar] [CrossRef]
- Ezugwu, E.; Arthur, S.; Hines, E. Tool-wear prediction using artificial neural networks. J. Mater. Process. Technol. 1995, 49, 255–264. [Google Scholar] [CrossRef]
- Walker, J.; Questa, H.; Raman, A.; Ahmed, M.; Mohammadpour, M.; Bewsher, S.R.; Offner, G. Application of Tribological Artificial Neural Networks in Machine Elements. Tribol. Lett. 2022, 71, 1–16. [Google Scholar] [CrossRef]
- Dowson, D.; Higginson, G.R. A Numerical Solution to the Elasto-Hydrodynamic Problem. J. Mech. Eng. Sci. 1959, 1, 6–15. [Google Scholar] [CrossRef]
- Paschold, C.; Sedlmair, M.; Lohner, T.; Stahl, K. Calculating component temperatures in gearboxes for transient operation conditions. Forsch. Ingenieurwesen 2021, 86, 521–534. [Google Scholar] [CrossRef]
- DIN 51354. Gears–FZG Test Methods Part 1: FZG Test Method A/8.3/90 for Determining the Relative Scuffing Load Capacity of Lubricating Oils. 2006-05. Available online: https://anlagen-produktsicherheit.dmt-group.com/fileadmin/media/produktpruefung/Fluidtechnik/FZG-Test_according_to_DIN_ISO_14635.pdf (accessed on 10 June 2023).
- ISO/TR, 141179–2; Gears—Thermal Capacity—Part 2: Thermal Load-Carrying Capacity. ISO: Geneva, Switzerland, 2001.
- Anderson, N.E.; Loewenthal, S.H. Spur-Gear-System Efficiency at Part and Full Load; NASA Technical Paper No. 1622; National Aeronautics and Space Administration, Scientific and technical Information Office: Washington, DC, USA, 1980.
- Cirelli, M.; Valentini, P.P.; Pennestrì, E. Multibody dynamics of gear pairs: Comparison among different models. In Proceedings of the 8th ECCOMAS Thematic Conference on Multibody Dynamics, Prague, Czech Republic, 19–22 June 2017. [Google Scholar]
- Marques, P.; Martins, R.; Seabra, J. Analytical load sharing and mesh stiffness model for spur/helical and internal/external gears—Towards constant mesh stiffness gear design. Mech. Mach. Theory 2017, 113, 126–140. [Google Scholar] [CrossRef]
- Dudley, D. Gear Handbook the Design Manufacture and Application of Gears; McGraw-Hill: New York, NY, USA, 1962. [Google Scholar]
- Autiero, M.; Belfiore, N.P.; Cirelli, M.; Paoli, G.; Pennestrì, E.; Valentini, P.P. A survey of empirical friction models for lubricated slotted joints in multibody dynamics simulations. In Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Lisbon, Portugal, 24–28 July 2023. in press. [Google Scholar]
- Benedict, G.H.; Kelley, B.W. Instantaneous Coefficients of Gear Tooth Friction. ASLE Trans. 1961, 4, 59–70. [Google Scholar] [CrossRef]
- Höhn, B.R.; Michaelis, K.; Otto, H.P. Flank load carrying capacity and power loss reduction by minimized lubrication. Gear Technol. 2011, 53–62. [Google Scholar]
- Arana, A.; Larrañaga, J.; Ulacia, I. Partial EHL friction coefficient model to predict power losses in cylindrical gears. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 233, 303–316. [Google Scholar] [CrossRef]
- Tallian, T. The theory of partial elastohydrodynamic. Wear 1972, 21, 49–101. [Google Scholar] [CrossRef]
- Doleschel, A. Wirkungsgradberechnung von Zahnradgetrieben in Abhängigkeit vom Schmiertstoff. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2003. [Google Scholar]
- Bair, S.; Winer, W.O. The high shear stress rheology of liquid lubricants at pressures of 2 to 200 MPa. ASME J. Trybology 1990, 112, 245–252. [Google Scholar] [CrossRef]
- Concli, F.; Gorla, C. Windage, churning and pocketing power losses of gears: Different modeling approaches for different goals. Forsch. Ingenieurwesen 2016, 80, 85–99. [Google Scholar] [CrossRef]
- Niemann, G.; Winter, H.; Höhn, B.R. Maschinenelemente Band I; Springer: New York, NY, USA; Berlin/Heidelberg, Germay, 1981. [Google Scholar]
- SKF. General Catalogue SKF. Available online: https://www.boie.de/INTERSHOP/static/WFS/BOIE-Site/BOIE_DE/BOIE-BOIE_DE/de_DE/Kataloge/SKF/6000_I_EN.pdf (accessed on 10 June 2023).
- SKF. Available online: https://www.skf.com/us/products/rolling-bearings/principles-of-rolling-bearing-selection/bearing-selection-process/operating-temperature-and-speed/estimating-bearing-operating-temperature (accessed on 10 June 2023).
- Linke, H.; Börner, J.; Hess, R.H. Cylindrical Gears: Calculation–Materials–Manufacturing; Carl Hanser Verlag GmbH Co. KG: Munich, Germany, 2016. [Google Scholar]
- Simmering, Radial-Wellendichtringe [Simmering/Radial Shaft Seals], Catalogue No. 100, Freudenberg Company: Weinheim, Germany.
- Loh, W. On Latin hypercube sampling. Ann. Stat. 1996, 24, 2058–2080. [Google Scholar] [CrossRef]
- Stein, M. Large Sample Properties of Simulations Using Latin Hypercube Sampling. Technometrics 1987, 29, 143. [Google Scholar] [CrossRef]
- Choi, H.S.; An, J.; Han, S.; Kim, J.G.; Jung, J. Data-driven simulation for general-purpose multibody dynamics using Deep Neural Networks. Multibody Syst. Dyn. 2021, 51, 419–454. [Google Scholar] [CrossRef]
- Blok, H. Theoretical Study of Temperature Rise at Surface of Actual Contact Under Oiliness Lubricating Conditions. Proc. Inst. Mech. Eng. Gen. Discuss. Lubr. Lubr. 1937, 2, 222–235. [Google Scholar]
Gears | ||
---|---|---|
Name | Pinion | Wheel |
Center distance (mm) | 91.5 | |
Number of teeth | 16 | 24 |
Normal module (mm) | 4.5 | |
Normal pressure angle (°) | 20 | |
Helix angle (°) | 0 | |
Face width (mm) | 14 | |
Addendum modification coefficient | 0.182 | 0.172 |
Flank surface roughness (m) | 0.174 | 0.157 |
Material | 16MnCr5 | |
Bearings | ||
Bearing type | Cylindrical roller NU406 | |
Seals | ||
Input shaft diameter (mm) | 24 | |
Output shaft diameter (mm) | 54 | |
Oil | ||
Oil type | Mineral | |
Kin. Viscosity@40 °C () | 32.63 | |
Kin. Viscosity@100 °C () | 5.45 | |
Density@15 °C () | 876.8 |
Power Loss | Model |
---|---|
Gear sliding | Partial EHL [29] |
Gear rolling | Anderson [22] |
Gear Churning | Niemann [34] |
Bearings | SKF [35] |
Seals | Simmering model [38] |
Hyperparameters | |
---|---|
Num. of hidden layers | 2 |
Num. of nodes per layer | 5 |
Batch size | 64 |
Num. of epochs | 1000 |
Activation function | Sigmoid |
Training algorithm | Levenberg–Marquardt backpropagation |
Parameter | Bounds | Parameter | Bounds | Parameter | Bounds |
---|---|---|---|---|---|
[50, 6500] | [20, 120] | [20, 120] | |||
[1, 350] | [20, 120] | [20, 120] | |||
[20, 120] | [20, 120] | [20, 120] |
Parameter | Value |
---|---|
Gearbox outside surface | 0.214 |
Gearbox inside surface | 0.149 |
Gearbox height | 0.215 |
Wall thickness | 0.024 |
Heat transfer coefficient between oil and housing | 950 |
Thermal conductivity of the housing | 40 |
Velocity of cooling air | 2 |
Temperature of cooling air | 25 ÷ 29 |
Contact surface of forced cooling air | 0.214 |
Length of pinion shaft | 0.223 |
Diameter of pinion shaft | 0.024 |
Length of wheel shaft | 0.090 |
Diameter of wheel shaft | 0.055 |
Thermal conductivity of shafts | 46 |
Kinematic Test Condition | ||||||
---|---|---|---|---|---|---|
0–3 | 3–6 | 6–9 | 9–12 | 12–15 | 15–18 | |
1 | 2 | 5 | 8.3 | 15 | 20 | |
174 | 348 | 870 | 1444 | 2609 | 3476 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Autiero, M.; Cirelli, M.; Paoli, G.; Valentini, P.P. A Data-Driven Approach to Estimate the Power Loss and Thermal Behaviour of Cylindrical Gearboxes under Transient Operating Conditions. Lubricants 2023, 11, 303. https://doi.org/10.3390/lubricants11070303
Autiero M, Cirelli M, Paoli G, Valentini PP. A Data-Driven Approach to Estimate the Power Loss and Thermal Behaviour of Cylindrical Gearboxes under Transient Operating Conditions. Lubricants. 2023; 11(7):303. https://doi.org/10.3390/lubricants11070303
Chicago/Turabian StyleAutiero, Matteo, Marco Cirelli, Giovanni Paoli, and Pier Paolo Valentini. 2023. "A Data-Driven Approach to Estimate the Power Loss and Thermal Behaviour of Cylindrical Gearboxes under Transient Operating Conditions" Lubricants 11, no. 7: 303. https://doi.org/10.3390/lubricants11070303
APA StyleAutiero, M., Cirelli, M., Paoli, G., & Valentini, P. P. (2023). A Data-Driven Approach to Estimate the Power Loss and Thermal Behaviour of Cylindrical Gearboxes under Transient Operating Conditions. Lubricants, 11(7), 303. https://doi.org/10.3390/lubricants11070303