Effect of Material Selection and Surface Texture on Tribological Properties of Key Friction Pairs in Water Hydraulic Axial Piston Pumps: A Review
Abstract
:1. Introduction
1.1. Development of Hydraulic Transmission Technology
1.2. Water Hydraulic Axial Piston Pumps
2. Materials
2.1. Special Corrosion-Resistant Alloy
2.2. Engineering Plastics
2.3. Engineering Ceramics
3. Biomimetic Surface Texture
3.1. Mechanisms
3.1.1. Hydrodynamic Effect and Cavitation Effect
3.1.2. Secondary Lubrication Effect
3.1.3. Wear Debris Storage
3.2. Texture Shape
3.3. Equivalent Diameter
3.3.1. Study on the Critical Value of Pit Equivalent Diameter
3.3.2. Study on Micron Level Size Diameter
3.4. Depth
3.4.1. Effects of Different Depths
3.4.2. The Influence of the Different Depth-to-Diameter Ratio
3.5. Arrangement
3.5.1. Texture Area Ratio
3.5.2. The Arrangement of Texture
3.6. Hardness, Microstructure, and Wettability in Texturing
3.6.1. Hardness
3.6.2. Microstructure
3.6.3. Wettability
4. Summary and Prospects
- (1)
- Based on the study of pit texture, groove texture, and mixed texture, the lubrication antifriction properties of the complex shape texture and the cross-scale composite texture under complex type synergies need to be further studied.
- (2)
- Surfaces with different wettability can be obtained using surface coating techniques; this is helpful in further improving the tribological properties of the textured surface. The mechanism of coordinated regulating of lubrication and friction reduction under the coupling of the surface texture and coating/thin film system is still unclear, and needs to be further explored.
- (3)
- The actual friction and wear process of the textured surface is a dynamic process, in which the fluid, wall, and abrasive particles interact, and the friction coefficient, friction temperature, and wear change in a complex manner. A multi-scale and multi-field coupling method should be used to build a bridge from the micro-physical field to the macro-tribological properties, and the influence mechanism of the surface parameters, such as surface roughness, texture shape, and geometric parameters, and dynamic changes in the properties of the lubricating medium on the friction and wear properties of the sliding interface, should be studied.
- (4)
- The high processing cost and the low industrial manufacturing degree of surface texture (especially on the micro- and nano-level) are the main obstacles restricting the application of surface texture engineering. It is urgent to make breakthroughs in the technology of the processing, characterization, and evaluation of the micro- and nano-complex surface textures with a high efficiency, high quality, and low cost.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NCEL | Naval Civil Engineering Lab |
PTFE | Polytetrafluoroethylene |
PEEK | Polyether ether ketone |
PI | Polyimide |
PA | Polyamide |
PPS | Polyphenylene sulfide |
UHMWPE | Ultra high molecular weight polyethylene |
OCP | Open circuit potential |
CF | Carbon fiber |
GF | Glass fiber |
LST | Laser surface texturing |
EDM | Electrical discharge machining |
HA | Hyaluronic acid |
DLC | Diamond-like carbon |
CFD | Computational fluid dynamics |
HV | Vickers hardness |
UVAT | Ultrasonic vibration-assisted turning |
References
- Li, Z.Y.; He, X.F.; Yu, Z.Y.; Nie, S.L. Development opportunity and prospective for water hydraulic technology. Fluid Power Transm. Control 2003, 13–19. (In Chinese) [Google Scholar]
- Zhu, J.A.; Guo, P.H. Developing history of water hydraulic technology and its application in coal mine production. Appl. Mech. Mater. 2010, 42, 236–241. [Google Scholar] [CrossRef]
- Yang, H.Y.; Zhou, H. New achievements in water hydraulics. Chin. Hydraul. Pneum. 2013, 258, 1–6. (In Chinese) [Google Scholar]
- Liu, Y.S.; Li, Z.Y. Hydraulic Components and Systems, 4th ed.; China Machine Press: Beijing, China, 2019; p. 12. (In Chinese) [Google Scholar]
- Lim, G.H.; Chua, P.S.K.; He, Y.B. Modern water hydraulics-the new energy-transmission technology in fluid power. Appl. Energy 2003, 76, 239–246. [Google Scholar] [CrossRef]
- Nie, S.L.; Shi, X.Y.; Li, X.H.; Li, Z.Y. Water hydraulics and its applications in the agricultural machinery. Trans. Chin. Soc. Agric. Mach. 2006, 37, 193–198. (In Chinese) [Google Scholar]
- Liu, L.Z.; Zhao, X.N.; Xie, E.Q. Analysis and Solution of the Influence of Mine Water on the Electric and Hydraulic Control System. Adv. Mater. Res. 2011, 356–360, 1220–1224. [Google Scholar] [CrossRef]
- Lu, Y.M.; Zhou, H. Water hydraulics in the food processing industry. Chin. Hydraul. Pneum. 2004, 49–50. (In Chinese) [Google Scholar]
- Wan, L. Push water hydraulic technology to wider application space. Hydraul. Pneum. Seals 2020, 40, 98–102. (In Chinese) [Google Scholar]
- Guo, X.T.; Xing, T.; Ruan, J. Industrial application and new progress of hydraulic technology. Chin. High Technol. Lett. 2020, 30, 644–654. (In Chinese) [Google Scholar]
- Zhou, H. Research on Seawater Hydraulic Pump and Its Basic Theory. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 1997. (In Chinese). [Google Scholar]
- Wang, D.; Li, Z.Y.; Zhu, Y.Q. Lubrication and tribology in seawater hydraulic piston pump. J. Mar. Sci. Appl. 2003, 2, 35–40. [Google Scholar] [CrossRef]
- Jiao, S.J.; Zhou, H.; Yang, H.Y.; Gong, G.F.; Chen, J.M.; Zhou, H.D. Tribological behavior of filled polyetheretherketone composites in sliding against stainless steel under water lubrication. Tribology 2003, 23, 385–389. (In Chinese) [Google Scholar]
- Liang, X.X.; Yang, Z.Y. Experimental study on the influence of friction pair material hardness on the tribological behaviors of water lubricated thrust bearings. Ind. Lubr. Tribol. 2021, 73, 929–936. [Google Scholar] [CrossRef]
- Zhai, X.; Ji, H.; Nie, S.L.; Yin, F.L.; Ma, Z.H. Effect of different Ni concentration on the corrosion and friction properties of WC-hNi/SiC pair lubricated with seawater. Int. J. Refract. Met. Hard Mater. 2022, 102, 105727. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z.L.; Cheng, Q.C.; Liu, X.K.; Deng, T.Y. The effect of wear on the frictional vibration suppression of water-lubricated rubber slat with/without surface texture. Wear 2019, 426–427, 1304–1317. [Google Scholar] [CrossRef]
- Wang, Z.Q.; He, H.F.; Wu, S.F.; Xiang, J.B.; Ni, J. Effect of surface topography and wettability on friction properties of CFRPEEK. Tribol. Int. 2022, 171, 107573. [Google Scholar] [CrossRef]
- Kong, X.; Sun, W.Y.; Wang, Q.C.; Chen, M.H.; Zhang, T.; Wang, F.H. Improving high-temperature wear resistance of NiCr matrix self-lubricating composites by controlling oxidation and surface texturing. J. Mater. Sci. Technol. 2022, 131, 253–263. [Google Scholar] [CrossRef]
- Zhai, J. Investigation into the Key Problems of Axial Piston Pump for Seawater Desalination. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2012. (In Chinese). [Google Scholar]
- Wu, D.F.; Li, B.; Chen, J.Y.; Liu, Y.S.; Li, Z.Y. Study on the tribological characteristics of slipper/swash plate pair of ultra-high seawater pump lubricated by water. Chin. Hydraul. Pneum. 2010, 229, 65–67. (In Chinese) [Google Scholar]
- Bhushan, B.; Gray, S. Investigation of Material Combinations under High Load and Speed in Synthetic Seawater; ASLE: Reno, NV, USA, 1978. [Google Scholar]
- Wen, H.X.; Sun, J.J.; Chen, W. Tribological study of the key friction pairs materials under seawater: Status quo and prospects. Mater. Rep. 2016, 30, 85–91+112. (In Chinese) [Google Scholar]
- Liu, E.Y.; Zeng, Z.X.; Zhao, W.J. Corrosive wear and integrated anti-wear & anti-corrosion technology metallic materials in seawater. Surf. Technol. 2017, 46, 149–157. (In Chinese) [Google Scholar]
- Li, W.Z.; Yan, N.; Deng, F.; Zhang, F.X. Research progress on friction and wear property of engineering plastics under water lubrication. New Chem. Mater. 2022, 50, 30–33+38. (In Chinese) [Google Scholar]
- Zhang, J.; Su, X.L.; Shan, L.; Li, J.L.; Dong, M.P. Tribological behaviors of ceramic materials in seawater. Lubr. Eng. 2018, 43, 104–110+123. (In Chinese) [Google Scholar]
- Cui, G.J.; Bi, Q.L.; Zhu, S.Y.; Yang, J.; Liu, W.M. Tribological behavior of Cu-6Sn-6Zn-3Pb under sea water, distilled water and dry-sliding conditions. Tribol. Int. 2012, 55, 126–134. [Google Scholar] [CrossRef]
- Wu, H.R.; Bi, Q.L.; Yang, J.; Liu, W.M. Tribological performance of tin-based white metal ZChSnSb 8-8 under simulated sea water environment. Tribology 2011, 31, 271–277. (In Chinese) [Google Scholar]
- Chen, J.; Li, Q.A.; Zhang, Q.; Fu, S.L.; Chen, X.Y. Effect of corrosion on wear resistance of several metals in seawater. Trans. Mater. Heat Treat. 2014, 35, 166–171. (In Chinese) [Google Scholar]
- Zhang, Y.; Yin, X.Y.; Wang, J.Z.; Yan, F.Y. Influence of microstructure evolution on tribocorrosion of 304SS in artificial seawater. Corros. Sci. 2014, 88, 423–433. [Google Scholar] [CrossRef]
- Dong, C.L.; Bai, X.Q.; Yan, X.P.; Yuan, C.Q. Research status and advances on tribological study of materials under ocean environment. Tribology 2013, 33, 311–320. (In Chinese) [Google Scholar]
- Ding, H.Y.; Dai, Z.D. Corrosion wear characteristic of TC11 alloy in artificial seawater. Tribology 2008, 28, 139–144. (In Chinese) [Google Scholar]
- Li, S.Z.; Dong, X.L. Erosion Wear and Fretting Wear of Materials; China Machine Press: Beijing, China, 1987; p. 280. (In Chinese) [Google Scholar]
- Li, X.X.; Li, Y.X.; Wang, S.Q. Wear behavior and mechanism of tc4 alloy in different environmental media. Chin. J. Rare Met. 2015, 39, 793–798. (In Chinese) [Google Scholar]
- Zhu, L.F. Study on the Tribocorrosion Behavior of 316L Stainless Steel and 2205 Duplex Steel in Seawater. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2016. (In Chinese). [Google Scholar]
- Zhang, Y.; Yin, X.Y.; Wang, J.Z.; Yan, F.Y. Influence of potentials on the tribocorrosion behavior of 304SS in artificial seawater. RSC Adv. 2014, 4, 55752–55759. [Google Scholar] [CrossRef]
- Zhang, B.B.; Wang, J.Z.; Zhang, Y.; Han, G.F.; Yan, F.Y. Comparison of tribocorrosion behavior between 304 austenitic and 410 martensitic stainless steels in artificial seawater. RSC Adv. 2016, 6, 107933–107941. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Li, Q.A.; Fu, S.L.; Wang, J.Z. Corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys in artificial seawater. Trans. Nonferrous Met. Soc. China 2014, 24, 1022–1031. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.Z.; Yan, F.Y.; Zhang, Q.; Li, Q.A. Effect of applied potential on the tribocorrosion behaviors of Monel K500 alloy in artificial seawater. Tribol. Int. 2015, 81, 1–8. [Google Scholar] [CrossRef]
- Tao, Y.Q.; Liu, G.; Li, Y.S.; Zeng, Z.X. Corrosion wear properties of 2024 Al-alloy in artificial seawater. J. Chin. Soc. Corros. Prot. 2016, 36, 587–594. (In Chinese) [Google Scholar]
- Wang, J.Z.; Yan, F.Y.; Xue, Q.J. Tribological behavior of PTFE sliding against steel in sea water. Wear 2009, 267, 1634–1641. [Google Scholar] [CrossRef]
- Jia, J.H.; Chen, J.M.; Zhou, H.D.; Zhang, D.J.; Gu, Y.H. The tribological properties of carbon fiber reinforced PEEK composites under water lubrication. Polym. Mater. Sci. Eng. 2005, 21, 208–212. (In Chinese) [Google Scholar]
- Jia, J.H.; Zhou, H.D.; Gao, S.Q.; Zhou, H.; Chen, J.M. The tribological behavior of carbon fiber reinforced polyimide composites under water lubrication. Tribology 2002, 22, 273–276. (In Chinese) [Google Scholar]
- Wang, H.Q.; Cao, L.L.; Sun, S.Q. A study on friction and wear behavior of Nylon 1010 under water lubricating with A3 steel. Tribology 1997, 17, 152–159. (In Chinese) [Google Scholar]
- Wei, X.C.; Su, Z.G.; Xu, B.M.; An, J.; Shen, Y.S.; Liu, S.Y. Friction and wear behaviours between GF/PA66 composite and Al2O3 ceramic. Acta Mater. Compos. Sin. 2012, 29, 47–52. (In Chinese) [Google Scholar]
- Chen, Z.B.; Li, T.S.; Yang, Y.L.; Zhang, Y. Mechanical and tribological properties of PA66/PPS blends--(Ⅱ) water lubrication. Polym. Mater. Sci. Eng. 2003, 19, 108–110+114. (In Chinese) [Google Scholar]
- Xiong, D.S.; Gao, Z.; Jin, Z.M. Friction and wear properties of UHMWPE against ion implanted titanium alloy. Surf. Coat. Technol. 2007, 201, 6847–6850. [Google Scholar] [CrossRef]
- Arash, G.; Klaus, F.; Andreas, N.; Braham, P. Tribological behavior of carbon-filled PPS composites in water lubricated contacts. Wear 2015, 328–329, 456–463. [Google Scholar]
- Xiong, D.S. Friction and wear properties of UHMWPE composites reinforced with carbon fiber. Mater. Lett. 2005, 59, 175–179. [Google Scholar]
- Zhang, J.G.; Cai, C.L. Friction and wear properties of carbon fiber reinforced PEEK composites under water lubrication. Appl. Mech. Mater. 2011, 66–68, 1051–1054. [Google Scholar] [CrossRef]
- Yang, Q.P.; Huang, P. Friction and wear property of glass fiber filled polytetrafluoroethylene under sea water lubrication. Mach. Tool Hydraul. 2016, 44, 12–18. (In Chinese) [Google Scholar]
- Xu, Y.K.; Guo, Y.X.; Li, G.T.; Zhang, L.G.; Zhao, F.Y.; Guo, X.P.; Dmitriev, A.I.; Zhang, G. Role of hydrolysable nanoparticles on tribological performance of PPS-steel sliding pair lubricated with sea water. Tribol. Int. 2018, 127, 147–156. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Xie, G.Y.; Sun, Z.S.; Sui, G.X. Study on the tribological properties of polyetheretherketone composites reinforced by ZrO2 particles and short carbon fibers under water lubrication. Chin. J. Mater. Res. 2010, 24, 625–630. (In Chinese) [Google Scholar]
- Xu, Y. A Study on Tribological Properties of Ceramic Class Composite Materials in Water. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2010. (In Chinese). [Google Scholar]
- Tomizawa, H.; Fischer, T.E. Friction and wear of silicon nitride and silicon carbide in water: Hydrodynamic lubrication at low sliding speed obtained by tribochemical wear. ASLE Trans. 1987, 30, 41–46. [Google Scholar] [CrossRef]
- Fischer, T.E.; Mullins, W.M. Chemical aspects of ceramic tribology. J. Phys. Chem. 1992, 96, 5690–5701. [Google Scholar] [CrossRef]
- Matsuda, M.; Kato, K.; Hashimoto, A. Friction and wear properties of silicon carbide in water from different sources. Tribol. Lett. 2011, 43, 33–41. [Google Scholar] [CrossRef]
- Gates, R.S.; Hsu, S.M. Tribochemistry between water and Si3N4 and SiC: Induction time analysis. Tribol. Lett. 2004, 17, 399–407. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.Z.; Chen, B.B.; Yang, J.; Yan, F.Y. Tribological behavior of alumina ceramic under lubrication of seawater. Lubr. Eng. 2013, 38, 55–59. (In Chinese) [Google Scholar]
- Wang, S.; Cheng, J.; Zhu, S.Y.; Qiao, Z.H.; Yang, J.; Liu, W.M. Frictional properties of Ti3AlC2 ceramic against different counterparts in deionized water and artificial seawater. Ceram. Int. 2016, 42, 4578–4585. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, J.; Zhu, S.Y.; Qiao, Z.H.; Yang, J. Low friction properties of Ti3AlC2/SiC tribo-pair in sea water environment. Tribol. Int. 2016, 103, 228–235. [Google Scholar] [CrossRef]
- Wang, J.; Yan, F.; Xue, Q. Friction and wear behavior of ultra-high molecular weight polyethylene sliding against GCR15 steel and electroless NI–P alloy coating under the lubrication of seawater. Tribol. Lett. 2009, 35, 85–95. [Google Scholar] [CrossRef]
- Li, Y.; Qu, L.; Wang, F.H. The electrochemical corrosion behavior of TiN and (Ti,AI)N coatings in acid and salt solution. Corros. Sci. 2003, 45, 1367–1381. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Yin, W.; Tao, D.S.; Tian, Y. A glimpse of superb tribological designs in nature. Biotribology 2015, 1, 11–23. [Google Scholar] [CrossRef]
- Wu, Z.; Bao, H.; Xing, Y.Q.; Liu, L. Tribological characteristics and advanced processing methods of textured surfaces: A review. Int. J. Adv. Manuf. Technol. 2021, 114, 1241–1277. [Google Scholar] [CrossRef]
- Hamilton, D.B.; Walowit, J.A.; Allen, C.M. A theory of lubrication by micro-irregularities. J. Basic Eng. 1966, 88, 177–185. [Google Scholar] [CrossRef]
- Etsion, I.; Burstein, L. A model for mechanical seals with regular microsurface structure. Tribol. Trans. 1996, 39, 677–683. [Google Scholar] [CrossRef]
- Etsion, I. State of the art in laser surface texturing. J. Tribol. 2005, 127, 248–253. [Google Scholar] [CrossRef]
- Etsion, I.; Sher, E. Improving fuel efficiency with laser surface textured piston rings. Tribol. Int. 2009, 42, 542–547. [Google Scholar] [CrossRef]
- Marian, M.; Shah, R.; Gashi, B.; Zhang, S.; Bhavnani, K.; Wartzack, S.; Rosenkranz, A. Exploring the lubrication mechanisms of synovial fluids for joint longevity-a perspective. Colloids Surf. B Biointerfaces 2021, 206, 111926. [Google Scholar] [CrossRef]
- Bijani, D.; Deladi, E.L.; Akchurin, A.; De Rooij, M.B.; Schipper, D.J. The influence of surface texturing on the frictional behaviour of parallel sliding lubricated surfaces under conditions of mixed lubrication. Lubricants 2018, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Gropper, D.; Wang, L.; Harvey, T.J. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings. Tribol. Int. 2016, 94, 509–529. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.W.; Wang, X.L.; Zhou, F. Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces. Tribol. Lett. 2010, 37, 123–130. [Google Scholar] [CrossRef]
- Etsion, I.; Kligerman, Y.; Halperin, G. Analytical and experimental investigation of laser-textured mechanical seal faces. Tribol. Trans. 1999, 42, 511–516. [Google Scholar] [CrossRef]
- Yu, H.W.; Deng, H.S.; Huang, W.; Wang, X.L. Effects of micro-dimple arrangements on tribological performance of sliding surfaces. J. China Univ. Min. Technol. 2011, 40, 943–948. (In Chinese) [Google Scholar]
- Liao, W.L. The influence of contact mode of friction pair on the hydrodynamic lubrication performance of textured surface. J. Chengdu Technol. Univ. 2020, 23, 1–9. (In Chinese) [Google Scholar]
- Borghi, A.; Gualtieri, E.; Marchetto, D.; Moretti, L.; Valeri, S. Tribological effects of surface texturing on nitriding steel for high-performance engine applications. Wear 2008, 265, 1046–1051. [Google Scholar] [CrossRef]
- Varenberg, M.; Halperin, G.; Etsion, I. Different aspects of the role of wear debris in fretting wear. Wear 2002, 252, 902–910. [Google Scholar] [CrossRef]
- Volchok, A.; Halperin, G.; Etsion, I. The effect of surface regular microtopography on fretting fatigue life. Wear 2002, 253, 509–515. [Google Scholar] [CrossRef]
- Li, T.T.; Sun, Y.N.; Zhang, L.; Wang, G.J. Research progress on effect of surface texturing on tribological properties. Mater. Mech. Eng. 2020, 44, 44–48. (In Chinese) [Google Scholar]
- Ito, H.; Kaneda, K.; Yuhta, T.; Nishimura, I.; Yasuda, K.; Matsuno, T. Reduction of polyethylene wear by concave dimples on the frictional surface in artificial hip joints. J. Arthroplast. 2000, 15, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Gachot, C.; Hsu, A.; Rosenkranz, S.M.; Costa, H.L. A critical assessment of surface texturing for friction and wear improvement. Wear 2017, 372–373, 21–41. [Google Scholar] [CrossRef]
- Mao, B.; Siddaiah, A.; Liao, Y.L.; Menezes, P.L. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. J. Manuf. Process. 2020, 53, 153–173. [Google Scholar] [CrossRef]
- Wang, X.J.; Liu, J.Y.; Wang, Y.; Fu, Y.N. Fabrication of friction-reducing texture surface by selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles (NPs). Appl. Surf. Sci. 2017, 396, 659–664. [Google Scholar] [CrossRef]
- Wang, H.; Kalchev, Y.; Wang, H.C.; Yan, K.; Gurevich, E.L.; Ostendorf, A. Surface modification of NiTi alloy by ultrashort pulsed laser shock peening. Surf. Coat. Technol. 2020, 394, 125899. [Google Scholar] [CrossRef]
- Babu, P.V.; Ismail, S.; Ben, B.S. Experimental and numerical studies of positive texture effect on friction reduction of sliding contact under mixed lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 360–375. [Google Scholar] [CrossRef]
- Xie, J.; Xie, H.F.; Luo, M.J.; Tan, T.W.; Li, P. Dry electro-contact discharge mutual-wear truing of micro diamond wheel V-tip for precision micro-grinding. Int. J. Mach. Tools Manuf. 2012, 60, 44–51. [Google Scholar] [CrossRef]
- Jain, A.; Kumari, N.; Jagadevan, S.; Bajpai, V. Surface properties and bacterial behavior of micro conical dimple textured Ti6Al4V surface through micro-milling. Surf. Interfaces 2020, 21, 100714. [Google Scholar] [CrossRef]
- Iacono, F.; Pirani, C.; Generali, L.; Sassatelli, P.; Nucci, C.; Gandolfi, M.G.; Prati, C. Wear analysis and cyclic fatigue resistance of electro discharge machined NiTi rotary instruments. G. Ital. Di Endod. 2016, 30, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, Y.; Murugesan, P.K.; Mohan, M.; Khan, S.A.L.A. Abrasive water jet machining process: A state of art of review. J. Manuf. Process. 2020, 49, 271–322. [Google Scholar] [CrossRef]
- Hernández-Castellano, P.M.; Benítez-Vega, H.A.N.; Díaz-Padilla, N.; Ortega-García, F.; Socorro-Perdomo, P.; Marrero-Alemán, M.D.; Salguero, J. Design and manufacture of structured surfaces by electroforming. Procedia Manuf. 2017, 13, 402–409. [Google Scholar] [CrossRef]
- Lauwers, B. Surface integrity in hybrid machining processes. Procedia Eng. 2011, 19, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Q.; Fu, Q.; Wood, R.J.K.; Wu, J.; Wang, S.C. Influence of bionic non-smooth surface texture on tribological characteristics of carbon-fiber-reinforced polyetheretherketone under seawater lubrication. Tribol. Int. 2020, 144, 106100. [Google Scholar] [CrossRef]
- Liang, Y.N.; Gao, D.R.; Chen, B.; Zhao, J.H. Friction and wear study on friction pairs with a biomimetic non-smooth surface of 316L relative to CF/PEEK under a seawater lubricated condition. Chin. J. Mech. Eng. 2019, 32, 66. [Google Scholar] [CrossRef] [Green Version]
- Vilhena, L.; Sedlaček, M.; Podgornik, B.; Rek, Z.; Žun, I. CFD modeling of the effect of different surface texturing geometries on the frictional behavior. Lubricants 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Zhang, P.; Sui, Q.; Zhao, K.; Zhou, H.; Ren, L.Q. Influence of multiple bionic unit coupling on sliding wear of laser-processed gray cast iron. J. Mater. Eng. Perform. 2017, 26, 1614–1625. [Google Scholar] [CrossRef]
- Wang, H.H.; Lin, N.M.; Yuan, S.; Liu, Z.Q.; Yu, Y.; Zeng, Q.F.; Li, D.Y.; Fan, J.F.; Wu, Y.C. Numerical simulation on hydrodynamic lubrication performance of bionic multi-scale composite textures inspired by surface patterns of subcrenata and clam shells. Tribol. Int. 2023, 181, 108335. [Google Scholar] [CrossRef]
- Wu, Z.M.; Yuan, C.Q.; Guo, Z.W.; Huang, Q.R. Effect of the groove parameters on the lubricating performance of the water-lubricated bearing under low speed. Wear 2023, 522, 204708. [Google Scholar] [CrossRef]
- Zhang, H.; Hua, M.; Dong, G.Z.; Zhang, D.Y.; Chen, W.J.; Dong, G.N. Optimization of texture shape based on Genetic Algorithm under unidirectional sliding. Tribol. Int. 2017, 115, 222–232. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, F.Z.; Jiang, F.L.; Zhang, Y.; Liu, G.H. Investigation of tribological performance of micro-groove textured cemented carbide surfaces. Surf. Eng. 2020, 36, 1190–1199. [Google Scholar] [CrossRef]
- Guo, Q.G.; Zheng, L.; Zhong, Y.H.; Wang, S.K.; Ren, L.Q. Numerical simulation of hydrodynamic lubrication performance for continuous groove-textured surface. Tribol. Int. 2022, 167, 107411. [Google Scholar] [CrossRef]
- Dong, G.N.; Zhang, H.; Chin, K.S.; Hua, M. Improvement of tribological behaviors by optimizing concave texture shape under reciprocating sliding motion. J. Tribol. 2017, 139, 011701. [Google Scholar]
- Luo, Y.H. Recent progress in exploring drag reduction mechanism of real sharkskin surface: A review. J. Mech. Med. Biol. 2015, 15, 1530002. [Google Scholar] [CrossRef]
- Brian, D.; Bharat, B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philos. Trans. R. Soc. A 2010, 368, 5737. [Google Scholar]
- Huang, Q.P.; Shi, X.L.; Ma, J. Tribological behavior of surface bionic rhombic-textured M50 steel containing SnAgCu and MXene-Nb2C under dry sliding Conditions. J. Mater. Eng. Perform. 2021, 30, 9390–9402. [Google Scholar] [CrossRef]
- Hatakeyama, H.; Hatakeyama, T. Interaction between water and hydrophilic polymers. Thermochim. Acta 1998, 308, 3–22. [Google Scholar] [CrossRef]
- Zhao, H.X.; Sun, Q.Q.; Deng, X.; Cui, J.X. Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces. Adv. Mater. 2018, 30, 1802141. [Google Scholar] [CrossRef]
- Wu, Y.H.; Dong, C.L.; Bai, X.Q.; Yuan, C.Q.; Zhang, X.J. A novel green and low friction composite reinforced by lignum vitae chips. Polym. Test. 2022, 115, 107768. [Google Scholar] [CrossRef]
- Hakala, T.J.; Saikko, V.; Arola, S.; Ahlroos, T.; Helle, A.; Kuosmanen, P.; Holmberg, K.; Linder, M.B.; Laaksonen, P. Structural characterization and tribological evaluation of quince seed mucilage. Tribol. Int. 2014, 77, 24–31. [Google Scholar] [CrossRef]
- Xu, X.Y.; Wu, J.N.; Yang, Y.Q.; Zhu, R.G.; Yan, S.Z. Operculum of a water snail is a hydrodynamic lubrication sheet. J. Bionic Eng. 2018, 15, 471–480. [Google Scholar] [CrossRef]
- Furukawa, K.; Ochiai, M.; Hashimoto, H.; Kotani, S. Bearing characteristic of journal bearing applied biomimetics. Tribol. Int. 2020, 150, 106345. [Google Scholar] [CrossRef]
- Guo, Z.W.; Xin, X.; Yuan, C.Q.; Bai, X.Q. Study on influence of micro convex textures on tribological performances of UHMWPE material under the water-lubricated conditions. Wear 2019, 426–427, 1327–1335. [Google Scholar] [CrossRef]
- Guo, Z.W.; Yuan, C.Q.; Liu, A.X.; Jiang, S. Study on tribological properties of novel biomimetic material for water-lubricated stern tube bearing. Wear 2017, 376–377, 911–919. [Google Scholar] [CrossRef]
- Burris, D.L.; Moore, A.C. Cartilage and joint lubrication: New insights into the role of hydrodynamics. Biotribology 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Chen, C.; Xia, Y.Q.; Cao, Z.F. Brasenia Schreberi mucilage as a green lubricant additive exhibiting good tribological properties for steel/steel and steel/aluminium friction pairs. Mater. Res. Express 2022, 9, 025503. [Google Scholar] [CrossRef]
- Liu, P.X.; Liu, Y.H.; Yang, Y.; Chen, Z.; Li, J.J.; Luo, J.B. Mechanism of biological liquid super lubricity of Brasenia schreberi mucilage. Langmuir ACS J. Surf. Colloids 2014, 30, 3811–3816. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Guo, Z.W.; Huang, Q.R.; Yuan, C.Q. Application of bionic tribology in water-lubricated bearing: A review. J. Bionic Eng. 2022, 19, 902–934. [Google Scholar] [CrossRef]
- Xu, Y.F.; Peng, Y.; Dearn, K.D.; You, T.; Geng, J.; Hu, X.G. Fabrication and tribological characterization of laser textured boron cast iron surfaces. Surf. Coat. Technol. 2017, 313, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Marian, M.; Zambrano, D.F.; Rothammer, B.; Waltenberger, V.; Boidi, G.; Krapf, A.; Merle, B.; Stampfl, J.; Rosenkranz, A.; Gachot, C.; et al. Combining multi-scale surface texturing and DLC coatings for improved tribological performance of 3D printed polymers. Surf. Coat. Technol. 2023, 466, 129682. [Google Scholar] [CrossRef]
- Sun, Q.C.; Hu, T.C.; Fan, H.Z.; Zhang, Y.S.; Hu, L.T. Dry sliding wear behavior of TC11 alloy at 500 °C: Influence of laser surface texturing. Tribol. Int. 2015, 92, 136–145. [Google Scholar] [CrossRef]
- Yu, H.W.; Huang, W.; Wang, X.L. Dimple patterns design for different circumstances. Lubr. Sci. 2013, 25, 67–78. [Google Scholar] [CrossRef]
- Costa, H.L.; Hutchings, I.M. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol. Int. 2007, 40, 1227–1238. [Google Scholar] [CrossRef]
- Wang, X.L.; Adachi, K.S.; Otsuka, K.; Kato, K.J. Preliminary investigation of the effect of dimple size on friction in line contacts. Tribol. Int. 2009, 42, 1118–1123. [Google Scholar] [CrossRef]
- Yin, B.F.; Li, X.D.; Fu, Y.H.; Yun, W. Effect of laser textured dimples on the lubrication performance of cylinder liner in diesel engine. Lubr. Sci. 2012, 24, 293–312. [Google Scholar] [CrossRef]
- Kovalchenko, A.; Ajayi, O.; Erdemir, A.; Fenske, G.; Etsion, I. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribol. Int. 2005, 38, 219–225. [Google Scholar] [CrossRef]
- Chouquet, C.; Gavillet, J.; Ducros, C.; Sanchette, F. Effect of DLC surface texturing on friction and wear during lubricated sliding. Mater. Chem. Phys. 2010, 123, 367–371. [Google Scholar] [CrossRef]
- Pettersson, U.; Jacobson, S. Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribol. Lett. 2004, 17, 553–559. [Google Scholar] [CrossRef]
- Tang, H.S.; Ren, Y.; Kumar, A. Optimization tool based on multi-objective adaptive surrogate modeling for surface texture design of slipper bearing in axial piston pump. Alex. Eng. J. 2021, 60, 4483–4503. [Google Scholar] [CrossRef]
- Shen, X.H.; Tao, G.C. Tribological behaviors of two micro textured surfaces generated by vibrating milling under boundary lubricated sliding. Int. J. Adv. Manuf. Technol. 2015, 79, 1995–2002. [Google Scholar] [CrossRef]
- Mourier, L.; Mazuyer, D.; Ninove, F.P.; Lubrecht, A.A. Lubrication mechanisms with laser-surface-textured surfaces in elastohydrodynamic regime. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2010, 224, 697–711. [Google Scholar] [CrossRef]
- Hou, Q.M.; Yang, X.F.; Cheng, J.; Wang, S.R.; Duan, D.R.; Xiao, J.P.; Li, W.Y. Optimization of performance parameters and mechanism of bionic texture on friction surface. Coatings 2020, 10, 171. [Google Scholar] [CrossRef] [Green Version]
- Mourier, L.; Mazuyer, D.; Lubrecht, A.A.; Donnetet, C. Transient increase of film thickness in micro-textured EHL contacts. Tribol. Int. 2006, 39, 1745–1756. [Google Scholar] [CrossRef]
- Kaneta, M.; Kanada, T.; Nishikawa, H. Optical interferometric observations of the effects of a moving dent on point contact EHL. Tribol. Ser. 1997, 32, 69–79. [Google Scholar]
- Sahlin, F.; Glavatskih, S.; Almqvist, T.; Larsson, R. Two-dimensional CFD-analysis of micro-patterned surfaces in hydrodynamic lubrication. J. Tribol. 2005, 127, 96–102. [Google Scholar] [CrossRef]
- Han, J.; Fang, L.; Sun, J.P.; Ge, S.R. Hydrodynamic lubrication of microdimple textured surface using three-dimensional CFD. Tribol. Trans. 2010, 53, 860–870. [Google Scholar] [CrossRef]
- He, X.; Zhong, L.; Wang, G.R.; Liao, Y.; Liu, Q.Y. Tribological behavior of femtosecond laser textured surfaces of 20CrNiMo/beryllium bronze tribo-pairs. Ind. Lubr. Tribol. 2015, 67, 630–638. [Google Scholar] [CrossRef]
- Kim, B.; Chae, Y.H.; Choi, H.S. Effects of surface texturing on the frictional behavior of cast iron surfaces. Tribol. Int. 2014, 70, 128–135. [Google Scholar] [CrossRef]
- Hu, D.; Guo, Z.W.; Xie, X.; Yuan, C.Q. Effect of spherical-convex surface texture on tribological performance of water-lubricated bearing. Tribol. Int. 2019, 134, 341–351. [Google Scholar] [CrossRef]
- Li, K.M.; Jing, D.L.; Hu, J.; Ding, X.H.; Yao, Z.Q. Numerical investigation of the tribological performance of micro-dimple textured surfaces under hydrodynamic lubrication. Beilstein J. Nanotechnol. 2017, 8, 2324–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.L.; Zhang, X.G.; Wu, T.H.; Xie, Y.B. Effects of surface texturing on the tribological behavior of piston rings under lubricated conditions. Ind. Lubr. Tribol. 2016, 68, 158–169. [Google Scholar] [CrossRef]
- Shimizu, J.; Nakayama, T.; Watanabe, K.; Yamamoto, T.; Onuki, T.; Ojima, H.; Zhou, L. Friction characteristics of mechanically microtextured metal surface in dry sliding. Tribol. Int. 2020, 149, 105634. [Google Scholar] [CrossRef]
- Hu, T.C.; Hu, L.T.; Ding, Q. Effective solution for the tribological problems of Ti-6Al-4V: Combination of laser surface texturing and solid lubricant film. Surf. Coat. Technol. 2012, 206, 5060–5066. [Google Scholar] [CrossRef]
- Meng, R.; Deng, J.X.; Liu, Y.Y.; Duan, R.; Zhang, G.L. Improving tribological performance of cemented carbides by combining laser surface texturing and W-S-C solid lubricant coating. Int. J. Refract. Met. Hard Mater. 2018, 72, 163–171. [Google Scholar] [CrossRef]
- Li, Y.J.; Pang, X.J.; Sun, L.M.; Niu, Y.X.; Zhang, Y.Z. Effects of laser surface texturing on friction and wear properties of 45 steel. Surf. Technol. 2018, 47, 147–154. (In Chinese) [Google Scholar]
- Wei, P.L. Research on Friction Characteristics of Surface Point Contact Lubrication and Kite-Shaped Texture Lubrication. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2020. (In Chinese). [Google Scholar]
- Wakuda, M.; Yamauchi, Y.; Kanzaki, S.; Yasuda, Y. Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear 2003, 254, 356–363. [Google Scholar] [CrossRef]
- Yang, X.P.; Fu, Y.H.; Ji, J.H.; Chen, T.Y.; Pan, C.Y. Study on tribological properties of surface concave convex micro-texture on the mold steel. Ind. Lubr. Tribol. 2020, 72, 1167–1171. [Google Scholar] [CrossRef]
- Xu, Y.F.; Zheng, Q.; Abuflaha, R.; Olson, D.; Furlong, O.; You, T.; Zhang, Q.Q.; Hu, X.G.; Tysoe, W.T. Influence of dimple shape on tribofilm formation and tribological properties of textured surfaces under full and starved lubrication. Tribol. Int. 2019, 136, 267–275. [Google Scholar] [CrossRef]
- Zhong, Y.H.; Zheng, L.; Gao, Y.H.; Liu, Z.N. Numerical simulation and experimental investigation of tribological performance on bionic hexagonal textured surface. Tribol. Int. 2019, 129, 151–161. [Google Scholar] [CrossRef]
- Wang, G.R.; Liao, D.S.; Zhong, L.; Liao, W.L.; Wei, G. Effect of groove-like surface texture on friction performance of plunger seal pair. Surf. Technol. 2019, 48, 165–173. (In Chinese) [Google Scholar]
- Wang, J.F.; Qian, W.; Wang, D. Effect of surface texture arrangements on lubrication characteristics. Lubr. Eng. 2015, 40, 86–90. (In Chinese) [Google Scholar]
- Yi, M.H.; Chen, G.D.; Gao, D.C.; Su, H.; Wang, L. Effects of micro texture on the dynamic characteristics of journal bearing. J. Northwestern Polytech. Univ. 2015, 33, 658–664. (In Chinese) [Google Scholar]
- Wang, H.T.; Zhu, H. Effect of cylindrical micro-pit’s distribution form on tribology properties of textured surface. Tribology 2014, 34, 414–419. (In Chinese) [Google Scholar]
- Zhang, H.; Liu, Y.; Hua, M.; Zhang, D.Y.; Qin, L.G.; Dong, G.N. An optimization research on the coverage of micro-textures arranged on bearing sliders. Tribol. Int. 2018, 128, 231–239. [Google Scholar] [CrossRef]
- Schneider, J.; Braun, D.; Greiner, C. Laser textured surfaces for mixed lubrication: Influence of aspect ratio, textured area and dimple arrangement. Lubricants 2017, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Yue, H.Z.; Deng, J.X.; Ge, D.L.; Li, X.M.; Zhang, Y. Effect of surface texturing on tribological performance of sliding guideway under boundary lubrication. J. Manuf. Process. 2019, 47, 172–182. [Google Scholar] [CrossRef]
- Antoszewski, B.; Kurp, P. Effect of surface texture on the sliding pair lubrication efficiency. Lubricants 2022, 10, 80. [Google Scholar] [CrossRef]
- Guo, Y.B.; Caslaru, R. Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti-6Al-4V surfaces. J. Mater. Process. Technol. 2011, 211, 729–736. [Google Scholar] [CrossRef]
- Garcia-Giron, A.; Romano, J.M.; Liang, Y.; Dashtbozorg, B.; Dong, H.; Penchev, P.; Dimov, S.S. Combined surface hardening and laser patterning approach for functionalising stainless steel surfaces. Appl. Surf. Sci. 2018, 439, 516–524. [Google Scholar] [CrossRef]
- Li, H.; Zhou, H.; Zhang, D.P.; Zhang, P.; Zhou, T. Influence of varying distribution distance and angle on fatigue wear resistance of 40Cr alloy steel with laser bionic texture. Mater. Chem. Phys. 2022, 277, 125515. [Google Scholar] [CrossRef]
- Hussein, H.T.; Kadhim, A.; Al-Amiery, A.A.; Kadhum, A.A.H.; Mohamad, A.B. Enhancement of the wear resistance and microhardness of aluminum alloy by Nd:YaG laser treatment. Sci. World J. 2014, 2014, 842062. [Google Scholar] [CrossRef]
- Amini, S.; Hosseinabadi, H.N.; Sajjady, S.A. Experimental study on effect of micro textured surfaces generated by ultrasonic vibration assisted face turning on friction and wear performance. Appl. Surf. Sci. 2016, 390, 633–648. [Google Scholar] [CrossRef]
- Ji, R.; Zhao, Q.; Zhao, L.; Liu, Y.; Jin, H.; Wang, L.; Wu, L.; Xu, Z. Study on high wear resistance surface texture of electrical discharge machining based on a new water-in-oil working fluid. Tribol. Int. 2023, 180, 108218. [Google Scholar] [CrossRef]
- Syed, B.; Shariff, S.M.; Padmanabham, G.; Lenka, S.; Bhattacharya, B.; Kundu, S. Influence of laser surface hardened layer on mechanical properties of re-engineered low carbon steel sheet. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2017, 685, 168–177. [Google Scholar] [CrossRef]
- Chen, Z.K.; Lu, S.C.; Song, X.B.; Zhang, H.; Yang, W.S.; Zhou, H. Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions. Opt. Laser Technol. 2015, 66, 166–174. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, J.; Zhang, S.; Sun, S.; Zhang, Z.; Liang, S.; Liu, Z.; Ren, L. Bionic coupling of hardness gradient to surface texture for improved anti-wear properties. J. Bionic Eng. 2016, 13, 406–415. [Google Scholar] [CrossRef]
- Ezhilmaran, V.; Vijayaraghavan, L.; Vasa, N.J. Investigation of Nd3+:YAG laser aided surface texturing to improve tribological characteristics of piston ring. J. Laser Micro Nanoeng. 2017, 12, 195–202. [Google Scholar]
- Khaskhoussi, A.; Risitano, G.; Calabrese, L.; D’Andrea, D. Investigation of the wettability properties of different textured lead/lead-free bronze coatings. Lubricants 2022, 10, 82. [Google Scholar] [CrossRef]
- Tian, X.L.; Verho, T.; Ras, R.H.A. Moving superhydrophobic surfaces toward real-world applications. Science 2016, 352, 142–143. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C.; Koch, K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2009, 367, 1631–1672. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C. Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces. J. Phys. Condens. Matter 2008, 20, 225010. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.Z.; Li, D.Y.; Huang, J.H.; Xiang, L.; Lu, J.W.; Wang, Y.; Li, J.Q.; Li, C.Z. Fabrication of bionic hydrophobic micropillar arrays by femtosecond lasers for droplet manipulation. Chin. Sci. Bull. 2022, 67, 1958–1965. (In Chinese) [Google Scholar] [CrossRef]
- Divin-Mariotti, S.; Amieux, P.; Pascale-Hamri, A.; Auger, V.; Kermouche, G.; Valiorgue, F.; Valette, S. Effects of micro-knurling and femtosecond laser micro texturing on aluminum long-term surface wettability. Appl. Surf. Sci. 2019, 479, 344–350. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, B.S.; Jha, P.; Mahanti, A.; Singh, K.; Kain, V.; Sinha, S. Surface micro-structuring of type 304 stainless steel by femtosecond pulsed laser: Effect on surface wettability and corrosion resistance. Appl. Phys. A 2018, 124, 846. [Google Scholar] [CrossRef]
- Yan, H.P.; Rashid, M.R.B.A.; Khew, S.Y.; Li, F.P.; Hong, M.H. Wettability transition of laser textured brass surfaces inside different mediums. Appl. Surf. Sci. 2018, 427, 369–375. [Google Scholar] [CrossRef]
Materials | Conditions | Friction Coefficient | Material Loss Rate/(mm3·mm−2·y−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Medium | Speed | Load | Potential | Total | Pure Mechanical Wear | Corrosion without Wear | Wear Accelerated Corrosion | Corrosion Accelerated Wear | ||
304/Al2O3 | Seawater | 80 r/min | 80 N | −0.7 V | 0.375 | 360 | 360 | — | — | — |
OCP 1 | 0.405 | 530 | 359.96 | 0.04 | 10 | 160 | ||||
+0.1 V | 0.427 | 650 | 359.9 | 0.1 | 17 | 273 | ||||
410/Al2O3 | Seawater | 80 r/min | 80 N | −0.7 V | 0.397 | 520 | 520 | — | — | — |
OCP 1 | 0.435 | 730 | 514.87 | 0.13 | 22 | 193 | ||||
+0.1 V | 0.380 | 610 | 529.6 | 0.4 | 55 | 25 | ||||
2205/Al2O3 | Seawater | 20 mm/s | 100 N | −0.8 V | 0.420 | 127.80 | 127.80 | — | — | — |
OCP 1 | 0.425 | 103.38 | 90.34 | 0.000437 | 0.22 | 12.82 | ||||
316L/Al2O3 | Pure water | 200 r/min | 100 N | OCP 1 | 0.55 | 145.0 | — | — | — | — |
Seawater | 0.43 | 185.4 | 134.8 | 0.0308 | 1.7 | 48.2 | ||||
OCP 1 | Pure water | 200 r/min | 100 N | OCP 1 | 0.29 | 42.0 | — | — | — | — |
Seawater | 0.24 | 68.7 | 43.8 | 0.00493 | 2.2 | 22.7 | ||||
OCP 1 | Seawater | 200 r/min | 100 N | −0.6 V | 0.22 | 1.56 | 1.56 | — | — | — |
OCP 1 | 0.17 | 2.18 | 1.56 | 0.00245 | 0.25 | 0.37 | ||||
+0.1 V | 0.12 | 3.42 | 1.56 | 0.00791 | 0.65 | 1.2 | ||||
+0.5 V | 0.09 | 5.93 | 1.56 | 0.01697 | 2.05 | 2.3 | ||||
+0.9 V | 0.08 | 9.31 | 1.56 | 0.03624 | 5.08 | 2.63 | ||||
2024 Aluminum alloy/Al2O3 | Seawater | 20 mm/s | 5 N | OCP 1 | 0.490 | 1012.0 | 993.9 | 0.00152 | 0.2 | 17.9 |
25 N | 0.465 | 4111.2 | 3682.0 | 0.00152 | 1.7 | 427.5 | ||||
50 N | 0.455 | 7472.4 | 5995.1 | 0.00152 | 1.9 | 1475.4 |
Materials | Tribological Properties | Friction and Wear Mechanism | References |
---|---|---|---|
PTFE | Excellent self-lubrication, chemical corrosion resistance, and high- and low-temperature resistance Low water absorption and hydrophobicity | It is difficult to form a transfer film on the counter surface. The friction and wear properties are improved by water boundary lubrication and cooling. | [40] |
PEEK | Good mechanical properties and chemical stability Many hydrophilic carbonyl groups in the macromolecular chains | (1) The hydrophilic carbonyl groups form a strong adsorption film with the water molecules, forming a boundary lubrication film between the friction interfaces. (2) Water molecules penetrate the surface of PEEK, causing swelling, the surface shear strength decreases, and the friction coefficient decreases. (3) The strong heat dissipation of water rapidly dissipates frictional heat, and the frictional surface is in a viscoelastic or even glass state, which significantly reduces the adhesive transfer of PEEK to the frictional counter surface. | [41] |
PI | Excellent specific strength, high- and low-temperature resistance, radiation resistance, and chemical corrosion resistance | (1) The polar amide groups contained in PI easily combine with water molecules through hydrogen bonding, forming a water adsorption film on the friction surface to lubricate. (2) The surface absorbs water, causing the swelling, shear strength, friction coefficient, and wear rate to decrease. | [42] |
PA | Stable chemical properties, high mechanical strength, and low friction coefficient with steel | (1) PA does not easily form transfer film on the counter surface because of its high water absorption, and mechanical micro-cutting continues to occur. (2) Friction heat intensifies the hydrolysis of amide groups in the molecules and the action of water molecules, weakens the hydrogen bond between the surface molecules, partially breaks the C-C bond, softening and damaging the material surface, and leads to a higher wear loss than dry friction. | [43,44] |
PPS | Excellent high-temperature resistance, corrosion resistance, anti-friction and wear resistance, dimensional stability, mechanical properties, thermal conductivity, and cohesiveness | (1) PPS friction coefficient decreases. (2) Water can penetrate the material surface, resulting in reduced strength and increased wear. | [45] |
UHMWPE | An engineering plastic of linear structure, with excellent impact resistance, self-lubrication, corrosion resistance, and low water absorption. | The hardness of the matrix is low, and the resistance to abrasive wear is poor. | [46] |
Friction Pair | Friction Coefficient | Friction and Lubrication Mechanism | Tribochemical Reaction Film | References |
---|---|---|---|---|
Si3N4/Si3N4 | 0.002 (under water) | hydrodynamic lubrication, mixed lubrication tribochemical wear | Si(OH)4 | [54,55] |
SiC/SiC | 0.013 (under seawater) | tribochemical wear | SiO2 | [56,57] |
Al2O3/Al2O3 | 0.2 (under water) | mechanical wear | -- | [58] |
0.12 (under seawater) | boundary lubrication tribochemical wear | Al(OH)3 | ||
Ti3AlC2/Si3N4 | 0.54 (under seawater) | mechanical wear | -- | [59,60] |
Ti3AlC2/SiC | 0.14 (under seawater) | boundary lubrication tribochemical wear | TiO2, Al2O3 and SiOx | |
Ti3AlC2/Al2O3 | 0.5 (under seawater) | mechanical wear | -- |
Organism/Tissue | Shape-Texture | Function | Mechanism | Reference |
---|---|---|---|---|
Snake | Triangular pit texture | Anti-friction | Reduce contact area | [92] |
Golfball | Semi-spherical pit texture | Anti-friction | Reduce contact area | [92] |
Dung beetle | Elliptical pit texture | Anti-friction | Reduce contact area and store lubricating oil | [92,95] |
Shell | Groove texture | Anti-wear | Provide hydrodynamic lubrication | [95,96] |
Phrynosoma cornutum | Diamond texture and lubricant | Anti-friction | Form a lubricating film | [104] |
Shark | Groove texture and lubricant | Anti-friction | Change turbulent pressure and increase the viscosity | [102,103] |
Dragonfly | Micro-spike texture | Anti-drag | Form a gas-phase region and suppress circulation flow and whirling | [110] |
Earthworm | Groove texture and mucus | Anti-drag | Reduce contact area and viscous friction | [105,106] |
Water nail | Groove texture | Anti-friction | Provide hydrodynamic lubrication | [109] |
Lignum vitae | Fiber, conduit, and resin | Anti-friction | Fiber-reinforced, emulsion-forming | [107,112] |
Joint | Synovial fluid | Anti-friction | Hydration | [113] |
Brasenia | Mucus | Anti-friction | Hydration | [114,115] |
Papaya seeds | Seed mucus | Anti-friction | Hydration | [108] |
Bionic Surface Texture Type | Bionic Object | Bionic Size/mm |
---|---|---|
Natural structure | Raindrop ellipsoid structure | 1~10 |
Surface of plants | Green radish surface | 0.01~0.1 |
Lotus leaf surface | 0.01~0.1 | |
Surface of insects | Dung beetle chest back plate pit | 0.01~1 |
Beetle head bump | 0.01~1 | |
Pill worm body surface ripple | 0.01~1 | |
Surface of terrestrial animals | Pangolin squama surface | 0.1~10 |
Snake scale surface | 0.1~10 | |
Surface of marine organisms | Shark skin | 0.1~10 |
Shell surface | 0.01~1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Wang, W.; Zhang, Z.; Xing, H.; Wang, C.; Zhang, Z.; Guan, T.; Gao, D. Effect of Material Selection and Surface Texture on Tribological Properties of Key Friction Pairs in Water Hydraulic Axial Piston Pumps: A Review. Lubricants 2023, 11, 324. https://doi.org/10.3390/lubricants11080324
Liang Y, Wang W, Zhang Z, Xing H, Wang C, Zhang Z, Guan T, Gao D. Effect of Material Selection and Surface Texture on Tribological Properties of Key Friction Pairs in Water Hydraulic Axial Piston Pumps: A Review. Lubricants. 2023; 11(8):324. https://doi.org/10.3390/lubricants11080324
Chicago/Turabian StyleLiang, Yingna, Wei Wang, Zhepeng Zhang, Hao Xing, Cunyuan Wang, Zongyi Zhang, Tianyuan Guan, and Dianrong Gao. 2023. "Effect of Material Selection and Surface Texture on Tribological Properties of Key Friction Pairs in Water Hydraulic Axial Piston Pumps: A Review" Lubricants 11, no. 8: 324. https://doi.org/10.3390/lubricants11080324
APA StyleLiang, Y., Wang, W., Zhang, Z., Xing, H., Wang, C., Zhang, Z., Guan, T., & Gao, D. (2023). Effect of Material Selection and Surface Texture on Tribological Properties of Key Friction Pairs in Water Hydraulic Axial Piston Pumps: A Review. Lubricants, 11(8), 324. https://doi.org/10.3390/lubricants11080324