Influence of Bearing Wear on the Stability and Modal Characteristics of a Flexible Rotor Supported on Powder-Lubricated Journal Bearings
Abstract
:1. Introduction
2. Mathematical Model
2.1. Grain Theory
2.2. Application to Bearing Lubrication
- Inertia forces and body forces can be neglected in comparison with viscous forces.
- Pressure is considered constant across the film.
- The terms , and their derivatives are negligible in comparison with , and their derivatives.
- The term , and their derivatives are negligible in comparison with .
2.3. Modelling of Bearing Wear
2.4. Modal Analysis of Rotors
3. Computational Procedure
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wornyoh, E.Y.A.; Jasti, V.K.; Higgs III, C.F. A Review of Dry Particulate Lubrication: Powder and Granular. J. Tribol. 2007, 129, 438–449. [Google Scholar] [CrossRef]
- Heshmat, H. Tribology of Interface Layers; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2010. [Google Scholar]
- Rahmani, F.; Dutt, J.K.; Pandey, R.K. Performance Behaviour of Elliptical-Bore Journal Bearings Lubricated with Solid Granular Particulates. Particuology 2016, 27, 51–60. [Google Scholar] [CrossRef]
- Iordanoff, I.; Seve, B.; Berthier, Y. Solid Third Body Analysis Using a Discrete Approach: Influence of Adhesion and Particle Size on Macroscopic Properties. J. Tribol. 2002, 124, 530–538. [Google Scholar] [CrossRef]
- Haff, P.K. Grain Flow as a Fluid-Mechanical Phenomenon. J. Fluid Mech. 1983, 134, 401. [Google Scholar] [CrossRef]
- Dai, F.; Khonsari, M.M.; Lu, Z.Y. On the Lubrication Mechanism of Grain Flows. Tribol. Trans. 1994, 37, 516–524. [Google Scholar] [CrossRef]
- Tsai, H.-J.; Jeng, Y.-R. An Average Lubrication Equation for Thin Film Grain Flow With Surface Roughness Effects. J. Tribol. 2002, 124, 736–742. [Google Scholar] [CrossRef]
- Tsai, H.-J.; Jeng, Y.-R. Characteristics of Powder Lubricated Finite-Width Journal Bearings: A Hydrodynamic Analysis. J. Tribol. 2006, 128, 351–357. [Google Scholar] [CrossRef]
- Heshmat, H.; Brewe, D.E. Performance of a Powder Lubricated Journal Bearing With WS2 Powder: Experimental Study. J. Tribol. 1996, 118, 484–491. [Google Scholar] [CrossRef]
- Higgs III, C.F.; Tichy, J. Effect of Particle and Surface Properties on Granular Lubrication Flow. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2008, 222, 703–713. [Google Scholar] [CrossRef]
- Higgs III, C.F.; Tichy, J. Granular Flow Lubrication: Continuum Modeling of Shear Behavior. J. Tribol. 2004, 126, 499–510. [Google Scholar] [CrossRef]
- Sawyer, W.G.; Tichy, J. Lubrication With Granular Flow: Continuum Theory, Particle Simulations, Comparison With Experiment. J. Tribol. 2001, 123, 777–784. [Google Scholar] [CrossRef]
- Meng, F.; Liu, K.; Wang, W. The Force Chains and Dynamic States of Granular Flow Lubrication. Tribol. Trans. 2015, 58, 70–78. [Google Scholar] [CrossRef]
- Wang, W.; Gu, W.; Liu, K.; Wang, F.; Tang, Z. DEM Simulation on the Startup Dynamic Process of a Plain Journal Bearing Lubricated by Granular Media. Tribol. Trans. 2014, 57, 198–205. [Google Scholar] [CrossRef]
- Wang, W.; Gu, W.; Liu, K. Force Chain Evolution and Force Characteristics of Shearing Granular Media in Taylor-Couette Geometry by DEM. Tribol. Trans. 2015, 58, 197–206. [Google Scholar] [CrossRef]
- Irretier, H. Mathematical Foundations of Experimental Modal Analysis in Rotor Dynamics. Mech. Syst. Signal Process. 1999, 13, 183–191. [Google Scholar] [CrossRef]
- Rao, J.S. Rotor Dynamics; New Age International (P) Ltd.: Delhi, India, 1996. [Google Scholar]
- Friswell, M.I.; Penny, J.E.; Garvey, S.D.; Lees, A.W. Dynamics of Rotating Machines; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Qiu, Z.L.; Tieu, A.K. The Effect of Perturbation Amplitudes on Eight Force Coefficients of Journal Bearings. Tribol. Trans. 1996, 39, 469–475. [Google Scholar] [CrossRef]
- Rahmani, F.; Dutt, J.K.; Pandey, R.K. Stability of Rotor Supported on Powder Lubricated Journal Bearings with Surface Pockets. Proc. IMechE Part C J. Mech. Eng. Sci. 2021, 235, 2317–2329. [Google Scholar] [CrossRef]
- El-Shafei, A.; Tawfick, S.H.; Raafat, M.S.; Aziz, G.M. Some Experiments on Oil Whirl and Oil Whip. In ASME Turbo Expo 2004: Power for Land, Sea, and Air, Proceedings of the Turbo Expo 2004, Vienna, Austria, 14–17 June 2004; ASME: New York, NY, USA, 2008; Volume 6, pp. 701–710. [Google Scholar] [CrossRef]
- Dufrane, K.F.; Kannel, J.W.; McCloskey, T.H. Wear of Steam Turbine Journal Bearings at Low Operating Speeds. J. Lubr. Technol. 1983, 105, 313–317. [Google Scholar] [CrossRef]
- Hashimoto, H.; Wada, S.; Nojima, K. Performance Characteristics of Worn Journal Bearings in Both Laminar and Turbulent Regimes. Part I: Steady-State Characteristics. ASLE Trans. 1986, 29, 565–571. [Google Scholar] [CrossRef]
- Fillon, M.; Bouyer, J. Thermohydrodynamic Analysis of a Worn Plain Journal Bearing. Tribol. Int. 2004, 37, 129–136. [Google Scholar] [CrossRef]
- Papadopoulos, C.A.; Nikolakopoulos, P.G.; Gounaris, G.D. Identification of Clearances and Stability Analysis for a Rotor-Journal Bearing System. Mech. Mach. Theory 2008, 43, 411–426. [Google Scholar] [CrossRef]
- Gertzos, K.P.; Nikolakopoulos, P.G.; Chasalevris, A.C.; Papadopoulos, C.A. Wear Identification in Rotor-Bearing Systems by Measurements of Dynamic Bearing Characteristics. Comput. Struct. 2011, 89, 55–66. [Google Scholar] [CrossRef]
- Chasalevris, A.C.; Nikolakopoulos, P.G.; Papadopoulos, C.A. Dynamic Effect of Bearing Wear on Rotor-Bearing System Response. J. Tribol. 2013, 135, 011008. [Google Scholar] [CrossRef]
- Machado, T.H.; Cavalca, K.L. Modeling of Hydrodynamic Bearing Wear in Rotor-Bearing Systems. Mech. Res. Commun. 2015, 69, 15–23. [Google Scholar] [CrossRef]
- Machado, T.H.; Mendes, R.U.; Cavalca, K.L. Directional Frequency Response Applied to Wear Identification in Hydrodynamic Bearings. Mech. Res. Commun. 2016, 74, 60–71. [Google Scholar] [CrossRef]
- Machado, T.H.; Alves, D.S.; Cavalca, K.L. Investigation about Journal Bearing Wear Effect on Rotating System Dynamic Response in Time Domain. Tribol. Int. 2019, 129, 124–136. [Google Scholar] [CrossRef]
- König, F.; Ouald Chaib, A.; Jacobs, G.; Sous, C. A Multiscale-Approach for Wear Prediction in Journal Bearing Systems—From Wearing-in towards Steady-State Wear. Wear 2019, 426–427, 1203–1211. [Google Scholar] [CrossRef]
- Gecgel, O.; Dias, J.P.; Ekwaro-Osire, S.; Alves, D.S.; Machado, T.H.; Daniel, G.B.; de Castro, H.F.; Cavalca, K.L. Simulation-Driven Deep Learning Approach for Wear Diagnostics in Hydrodynamic Journal Bearings. J. Tribol. 2020, 143, 084501. [Google Scholar] [CrossRef]
- Mokhtari, N.; Pelham, J.G.; Nowoisky, S.; Bote-Garcia, J.L.; Gühmann, C. Friction and Wear Monitoring Methods for Journal Bearings of Geared Turbofans Based on Acoustic Emission Signals and Machine Learning. Lubricants 2020, 8, 29. [Google Scholar] [CrossRef]
- König, F.; Sous, C.; Ouald Chaib, A.; Jacobs, G. Machine Learning Based Anomaly Detection and Classification of Acoustic Emission Events for Wear Monitoring in Sliding Bearing Systems. Tribol. Int. 2021, 155, 106811. [Google Scholar] [CrossRef]
- Rahmani, F.; Pandey, R.K.; Dutt, J.K. Performance Studies of Powder-Lubricated Journal Bearing Having Different Pocket Shapes at Cylindrical Bore Surface. J. Tribol. 2018, 140, 031704. [Google Scholar] [CrossRef]
- Meirovitch, L. Fundamentals of Vibrations; Waveland Press: Long Grove, IL, USA, 2010. [Google Scholar]
- Chouksey, M.; Dutt, J.K.; Modak, S.V. Modal Analysis of Rotor-Shaft System under the Influence of Rotor-Shaft Material Damping and Fluid Film Forces. Mech. Mach. Theory 2012, 48, 81–93. [Google Scholar] [CrossRef]
Parameter | Notation | Unit | Value |
---|---|---|---|
Shaft diameter | ds | mm | 34.0 |
Shaft length | Ls | mm | 1000 |
Disc mass | md | kg | 20.4 |
Rotor unbalance | mdud | kg·m | 0.02 |
Bearing length | L | mm | 34.0 |
Bearing diameter | D | mm | 34.0 |
Radial clearance | c | mm | 0.1 |
Maximum wear depth | - | 0.1, 0.2, 0.3 | |
Grain diameter | d | μm | 1.0 |
t/q | 1.0 | ||
γ/r | 0.0004 | ||
B/U | 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmani, F.; Makki, E.; Giri, J. Influence of Bearing Wear on the Stability and Modal Characteristics of a Flexible Rotor Supported on Powder-Lubricated Journal Bearings. Lubricants 2023, 11, 355. https://doi.org/10.3390/lubricants11090355
Rahmani F, Makki E, Giri J. Influence of Bearing Wear on the Stability and Modal Characteristics of a Flexible Rotor Supported on Powder-Lubricated Journal Bearings. Lubricants. 2023; 11(9):355. https://doi.org/10.3390/lubricants11090355
Chicago/Turabian StyleRahmani, Faisal, Emad Makki, and Jayant Giri. 2023. "Influence of Bearing Wear on the Stability and Modal Characteristics of a Flexible Rotor Supported on Powder-Lubricated Journal Bearings" Lubricants 11, no. 9: 355. https://doi.org/10.3390/lubricants11090355
APA StyleRahmani, F., Makki, E., & Giri, J. (2023). Influence of Bearing Wear on the Stability and Modal Characteristics of a Flexible Rotor Supported on Powder-Lubricated Journal Bearings. Lubricants, 11(9), 355. https://doi.org/10.3390/lubricants11090355