A BPNN-QSTR Model for Friction-Reducing Performance of Organic Liquid Lubricants on SiC/PI Friction Pair
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Tribological Test
2.3. Quantitative Structure Tribo-Ability Relationship Model
2.3.1. Experimental Data Processing
2.3.2. Modeling Method
3. Results and Discussion
3.1. Result of the Model
3.2. Validation of the Model
3.2.1. Internal Predictive Ability
3.2.2. External Predictive Ability
3.2.3. Comparison of Predicted and Observed Values
3.3. Sensitivity Analysis on Descriptors
3.3.1. Jurs Descriptors
3.3.2. Molecular Property Counts
3.3.3. Solvent-Accessible Surface Area
3.3.4. Estate Keys
3.3.5. AlogP
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stachowiak, G.W. How tribology has been helping us to advance and to survive? Friction 2017, 5, 233–247. [Google Scholar] [CrossRef]
- Zhai, W.Z.; Zhou, K. Nanomaterials in superlubricity. Adv. Funct. Mater. 2019, 29, 1806395. [Google Scholar] [CrossRef]
- Hirano, M.; Kazumasa, S. Atomistic locking and friction. Phys. Rev. B 1990, 41, 11837. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, J.R.; Grey, F.; Liu, Z.J.; Liu, Y.L.; Wang, Y.B.; Yang, Y.L.; Cheng, Y.; Zheng, Q.S. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 2012, 108, 205503. [Google Scholar] [CrossRef]
- Zhang, B.; Ji, L.; Lu, Z.B.; Li, H.X.; Zhang, J.Y. Progress on engineering oriented solid superlubricity. Tribology 2023, 43, 3–17. [Google Scholar]
- Ge, X.Y.; Li, J.J.; Luo, J.B. Macroscale superlubricity achieved with various liquid molecules: A review. Front. Mech. Eng. 2019, 5, 1–15. [Google Scholar] [CrossRef]
- Han, T.Y.; Zhang, S.W.; Zhang, C.H. Unlocking the secrets behind liquid superlubricity: A state-of-the-art review on phenomena and mechanisms. Friction 2022, 10, 1137–1165. [Google Scholar] [CrossRef]
- Kizilkaya, C.; Mülazim, Y.; Kahraman, M.V.; Apohan, N.; Güngör, A. Synthesis and characterization of polyimide/hexagonal boron nitride composite. J. Appl. Polym. Sci. 2012, 124, 706–712. [Google Scholar] [CrossRef]
- Tian, J.; Wang, H.Y.; Huang, Z.Y.; Lu, R.G.; Cong, P.; Liu, X.J.; Li, T.S. Investigation on tribological properties of fluorinated polyimide. J. Macromol. Sci. Part B 2010, 49, 791–801. [Google Scholar] [CrossRef]
- Min, C.Y.; Nie, P.; Song, H.J.; Zhang, Z.Z.; Zhao, K.L. Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition. Tribol. Int. 2014, 80, 131–140. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, T.; Wang, Q.; Wang, C. Selectively enhanced oil retention of porous polyimide bearing materials by direct chemical modification. J. Appl. Polym. Sci. 2017, 134, 45106. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, D.; Wang, Q.; Ruan, H.; Wang, T. Effect of porosity on the friction properties of porous polyimide impregnated with poly-α-olefin in different lubrication regimes. Tribol. Lett. 2020, 68, 1–9. [Google Scholar] [CrossRef]
- Ruan, H.; Shao, M.; Zhang, Y.; Wang, Q.; Wang, C.; Wang, T. Supramolecular oleogel-impregnated macroporous polyimide for high capacity of oil storage and recyclable smart lubrication. ACS Appl. Mater. Interfaces 2022, 14, 10936–10946. [Google Scholar] [CrossRef] [PubMed]
- Buckley, D.H.; Miyoshi, K. Friction and wear of ceramics. Wear 1984, 100, 333–353. [Google Scholar] [CrossRef]
- Boch, P.; Platon, F.; Kapelski, G. Tribological and interfacial phenomena in Al2O3/SiC and SiC/SiC couples at high temperature. J. Eur. Ceram. Soc. 1989, 5, 223–228. [Google Scholar] [CrossRef]
- Cho, S.J.; Um, C.D.; Kim, S.S. Wear and wear transition mechanism in silicon carbide during sliding. J. Am. Ceram. Soc. 1995, 78, 1076–1078. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Nie, S.L.; Liao, W.J. Tribological behaviors of carbon fiber reinforced polyetheretherketone sliding against silicon carbide ceramic under seawater lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014, 228, 1421–1432. [Google Scholar] [CrossRef]
- Matsuda, M.; Kato, K.; Hashimoto, A. Friction and wear properties of silicon carbide in water from different sources. Tribol. Lett. 2011, 43, 33–41. [Google Scholar] [CrossRef]
- Schreiber, P.J.; Schneider, J. Liquid superlubricity obtained for self-mated silicon carbide in nonaqueous low-viscosity fluid. Tribol. Int. 2019, 134, 7–14. [Google Scholar] [CrossRef]
- Gao, X.L.; Wang, Z.; Dai, K.; Wang, T.T. A Quantitative structure tribo-ability relationship model for ester lubricant base oils. J. Tribol. 2015, 137, 021801. [Google Scholar] [CrossRef]
- Gao, X.L.; Wang, T.T.; Cheng, Z. Quantitative structure tribo-ability relationship of ultra-high molecular weight polyethylene modified by inorganic compounds. Ind. Lubr. Tribol. 2018, 70, 182–190. [Google Scholar] [CrossRef]
- Wang, T.T.; Wang, Z.; Chen, H.; Dai, K.; Gao, X.L. BPNN-QSTR models for triazine derivatives for lubricant additives. J. Tribol. 2020, 142, 011801. [Google Scholar] [CrossRef]
- Li, B.R. Structural Chemistry; Higher Education Press: Beijing, China, 2011; pp. 638–664. [Google Scholar]
- Bahadir, E. Prediction of prospective mathematics teachers’ academic success in entering graduate education by using back-propagation neural network. J. Educ. Train. Stud. 2016, 4, 113–122. [Google Scholar] [CrossRef]
- Gombar, G.V.K. The Importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR Models. QSAR Comb. Sci. 2003, 22, 66–77. [Google Scholar]
- Stanton, D.T.; Jurs, P.C. Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Anal. Chem. 1990, 62, 2323–2329. [Google Scholar] [CrossRef]
No. | Name | Formula | COF | MFexpt | MFpred | Δ |
---|---|---|---|---|---|---|
1 | ethane-1,2-diol | C2H6O2 | 0.06891 | 1.502 | 1.498 | −0.004 |
2 * | butane-1,4-diol | C4H10O2 | 0.00391 | 1.353 | 1.499 | 0.146 |
3 | propane-1,2,3-triol | C3H8O3 | 0.00461 | 1.380 | 1.378 | −0.002 |
4 | 6-chlorohexan-1-ol | C6H13ClO | 0.01082 | 1.642 | 1.678 | 0.036 |
5 | octan-1-ol | C8H18O | 0.05532 | 1.800 | 1.744 | −0.056 |
6 | 2-ethylhexan-1-ol | C8H18O | 0.05811 | 1.805 | 1.785 | −0.020 |
7 | octan-2-ol | C8H18O | 0.05267 | 1.795 | 1.808 | 0.013 |
8 * | nonan-1-ol | C9H20O | 0.01969 | 1.732 | 1.693 | −0.039 |
9 | 2-(benzylamino)ethanol | C9H13NO | 0.01860 | 1.747 | 1.742 | −0.005 |
10 | decan-1-ol | C10H22O | 0.00239 | 1.544 | 1.661 | 0.117 |
11 | undecan-1-ol | C11H24O | 0.01486 | 1.779 | 1.693 | −0.086 |
12 | octanoic acid | C8H16O2 | 0.03073 | 1.781 | 1.777 | −0.004 |
13 | (Z)-octadec-9-enoic acid | C18H34O2 | 0.02924 | 2.067 | 2.071 | 0.004 |
14 * | nonanal | C9H18O | 0.02535 | 1.754 | 1.705 | −0.049 |
15 | decanal | C10H20O | 0.01193 | 1.713 | 1.712 | −0.001 |
16 | 1-(4-methylphenyl)propan-1-one | C10H12O | 0.02911 | 1.787 | 1.763 | −0.024 |
17 | methylsulfinylmethane | C2H6SO | 0.04652 | 1.559 | 1.555 | −0.004 |
18 | 2-chloro-1,3-benzoxazole | C7H4ClNO | 0.02501 | 1.784 | 1.783 | −0.001 |
19 | 1-bromooctane | C8H17Br | 0.04780 | 1.953 | 1.943 | −0.010 |
20 | 1-chlorodecane | C10H21Cl | 0.04655 | 1.913 | 1.925 | 0.012 |
21 * | 1-bromodecane | C10H21Br | 0.05172 | 2.021 | 2.025 | 0.004 |
22 | 1-iododecane | C10H21I | 0.03699 | 2.070 | 2.054 | −0.016 |
23 | 1-bromododecane | C12H25Br | 0.03017 | 2.015 | 2.019 | 0.004 |
24 | 1-chlorotetradecane | C14H29Cl | 0.04010 | 2.017 | 1.994 | −0.023 |
25 * | 1-bromotetradecane | C14H29Br | 0.01808 | 2.005 | 1.969 | −0.036 |
26 | hexadecane | C16H34 | 0.05724 | 2.044 | 2.060 | 0.016 |
27 | 1-bromohexadecane | C16H33Br | 0.00716 | 1.947 | 1.942 | −0.005 |
28 | methyl 2-phenylacetate | C9H10O2 | 0.01423 | 1.715 | 1.706 | −0.009 |
29 | methyl decanoate | C11H22O2 | 0.04978 | 1.944 | 1.939 | −0.005 |
30 * | methyl dodecanoate | C13H26O2 | 0.03207 | 1.957 | 2.084 | 0.127 |
31 | dimethyl propanedioate | C5H8O4 | 0.02299 | 1.711 | 1.716 | 0.005 |
32 | tert-butyl (2-methylpropan-2-yl)oxycarbonyl carbonate | C10H18O5 | 0.01156 | 1.854 | 1.867 | 0.013 |
33 * | dibutyl butanedioate | C12H22O4 | 0.00850 | 1.844 | 1.893 | 0.049 |
34 | dibutyl benzene-1,2-dicarboxylate | C16H22O4 | 0.00793 | 1.919 | 1.918 | −0.001 |
35 | triphenyl phosphite | C18H15O3P | 0.06006 | 2.186 | 2.171 | −0.015 |
36 | tris(2-methylphenyl) phosphate | C21H21O4P | 0.01231 | 2.089 | 2.099 | 0.010 |
Network | R2 | R2 (LOO) | q2 |
---|---|---|---|
11-5-1 | 0.9700 | 0.6570 | 0.8606 |
Descriptor | Description |
---|---|
ALogP | Log of the octanol-water partition coefficient using the atom-based method. |
ES_Count_sOH | Calculate the E-state count for OH with one single bond. |
Molecular_Weight | The sum of the atomic masses. |
HBD_Count | Number of hydrogen bond donating groups in the molecule. |
Num_H_Donors_Lipinski | Number of Hydrogen Bond Donors which are defined as heteroatoms (N, O, P, and S) with one or more attached Hydrogen atoms. |
Molecular_PolarSASA | the sum of the solvent accessible surface area of all the selected polar elements, which can include N, O, P, and S. |
Jurs_DPSA_2 | Total charge weighted positive solvent-accessible surface area minus total charge weighted negative solvent-accessible surface area. |
Jurs_DPSA_3 | Atomic charge weighted positive solvent-accessible surface area minus atomic charge weighted negative solvent-accessible surface area. |
Jurs_RNCG | Charge of most negative atom divided by the total negative charge. |
Jurs_TASA | Sum of solvent-accessible surface areas of atoms with absolute value of partial charges less than 0.2. |
Jurs_WNSA_2 | Partial negative solvent-accessible surface area multiplied by the total negative charge, then multiplied by the total molecular solvent-accessible surface area and divided by 1000. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, L.; Chen, H.; Wu, L.; Gao, X. A BPNN-QSTR Model for Friction-Reducing Performance of Organic Liquid Lubricants on SiC/PI Friction Pair. Lubricants 2023, 11, 387. https://doi.org/10.3390/lubricants11090387
Wang T, Zhang L, Chen H, Wu L, Gao X. A BPNN-QSTR Model for Friction-Reducing Performance of Organic Liquid Lubricants on SiC/PI Friction Pair. Lubricants. 2023; 11(9):387. https://doi.org/10.3390/lubricants11090387
Chicago/Turabian StyleWang, Tingting, Liang Zhang, Hao Chen, Li Wu, and Xinlei Gao. 2023. "A BPNN-QSTR Model for Friction-Reducing Performance of Organic Liquid Lubricants on SiC/PI Friction Pair" Lubricants 11, no. 9: 387. https://doi.org/10.3390/lubricants11090387
APA StyleWang, T., Zhang, L., Chen, H., Wu, L., & Gao, X. (2023). A BPNN-QSTR Model for Friction-Reducing Performance of Organic Liquid Lubricants on SiC/PI Friction Pair. Lubricants, 11(9), 387. https://doi.org/10.3390/lubricants11090387