Significance of Temperature-Dependent Density on Dissipative and Reactive Flows of Nanofluid along Magnetically Driven Sheet and Applications in Machining and Lubrications
Abstract
:1. Introduction and Literature Review
2. Mathematical Formulation and Flow Shape
3. Stream Factors and Similarity Analysis
4. Numerical Procedure and Method
5. Results and Discussion
6. Conclusions
- The certain amplitude in the temperature distribution is illustrated as but decreases as the density parameter increases. Similarly, the concentration distribution increases as the density of fluid decreases for Pr = 7.0.
- The temperature of the water-based fluid increases as the Eckert number increases with prominent variations. Physically, it is valid because the entropy generation acts like a heat source to produce the ability in the temperature of the fluid.
- The prominent enhancement in the temperature of the fluid is assessed for the maximum Pr but decreases as the Pr decreases. Moreover, the reasonable change in the concentration distribution is evaluated for each Pr with entropy generation.
- The heat and mass transfer rates are gradually enhanced with a prominent change as increases under thermal densities and viscous dissipations.
- It is found that the dimensionless Nusselt coefficient is decreased for the maximum under Pr = 7.0. However, the dimensionless mass transfer is increased for the maximum in the presence of buoyancy and magnetic forces.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Constant | Ambient temperature | ||
Nanoparticle volume fraction | Velocity components along x and y axes | ||
Nanoparticle volume fraction at surface | Velocity of the stretching sheet | ||
Ambient nanoparticle volume fraction | Cartesian coordinates | ||
Brownian diffusion coefficient | |||
Greek Symbols | |||
Thermophoretic diffusion coefficient | Thermal diffusivity | ||
Dimensionless stream function | Rescaled nanoparticle volume fraction | ||
Thermal conductivity | Similarity variable | ||
Lewis number | Dimensionless temperature | ||
Brownian motion parameter | Kinematic viscosity of the fluid | ||
Thermophoresis parameter | Fluid density | ||
Nusselt number | Nanoparticle mass density | ||
Prandtl number | Heat capacity of the fluid | ||
Pressure | Heat capacity of nanoparticle material | ||
Wall mass flux | Ratio of heat capacity of nanoparticle and fluid | ||
Wall heat flux | Stream function | ||
Local Reynolds number | Buoyancy parameter | ||
Local Sherwood number | Magnetic force parameter | ||
Fluid temperature | Density parameter | ||
Temperature at the stretching surface | Reaction rate | ||
Reaction rate constant | Eckert number |
References
- Khan, M.S.; Karim, I.; Islam, M.S.; Wahiduzzaman, M. MHD boundary layer radiative, heat generating and chemical reacting flow past a wedge moving in a nanofluid. Nano Converg. 2014, 1, 20. [Google Scholar] [CrossRef]
- Anjum, A.; Masood, S.; Farooq, M.; Rafiq, N.; Malik, M.Y. Investigation of binary chemical reaction in magnetohydrodynamic nanofluid flow with double stratification. Adv. Mech. Eng. 2021, 13, 16878140211016264. [Google Scholar] [CrossRef]
- Ramya, D.; Raju, R.S.; Rao, J.A. Influence of chemical reaction on MHD boundary layer flow of nanofluids over a nonlinear stretching sheet with thermal radiation. J. Nanofluids 2016, 5, 880–888. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Zhou, Z.; Liu, B.; Zhang, Y.; Yang, M.; Gao, T.; Liu, M.; Zhang, N.; Said, Z.; et al. Vegetable Oil-Based Nanolubricants in Machining: From Physicochemical Properties to Application. Chin. J. Mech. Eng. 2023, 36, 76. [Google Scholar]
- Kasmani, R.M.; Sivanandam, S.; Bhuvaneswari, M.; Siri, Z. Effect of chemical reaction on convective heat transfer of boundary layer flow in nanofluid over a wedge with heat generation/absorption and suction. J. Appl. Fluid Mech. 2016, 9, 379–388. [Google Scholar] [CrossRef]
- Doshi, S.J.; Jain, P.K.; Mehta, N.K. Prospective applications of nano fluid during machining process. Int. J. Mach. Mach. Mater. 2013, 14, 257–274. [Google Scholar] [CrossRef]
- Jagadha, S.; Gopal, D.; Kishan, N. Nanofluid flow of higher order radiative chemical reaction with effects of melting and viscous dissipation. J. Phys. Conf. Ser. 2020, 1451, 012003. [Google Scholar] [CrossRef]
- Rao, D.N.; Srikant, R.R.; Krishna, P.V.; Subrahmanyam, M.S. Nano cutting fluids in minimum quantity lubrication. Proc. Int. Multi-Conf. Eng. Technol. Innov. 2008, 1, 60–63. [Google Scholar]
- Afify, A.A. The influence of slip boundary condition on Casson nanofluid flow over a stretching sheet in the presence of viscous dissipation and chemical reaction. Math. Probl. Eng. 2017, 2017, 3804751. [Google Scholar] [CrossRef]
- Hasin, F.; Ahmad, Z.; Ali, F.; Khan, N.; Khan, I.; Eldin, S.M. Impact of nanoparticles on vegetable oil as a cutting fluid with fractional ramped analysis. Sci. Rep. 2023, 13, 7140. [Google Scholar] [CrossRef]
- Srikant, R.; Prasad, M.; Amrita, M.; Sitaramaraju, A.; Krishna, P.V. Nanofluids as a potential solution for minimum quantity lubrication: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 228, 3–20. [Google Scholar] [CrossRef]
- Kadirgama, K. Nanofluid as an alternative coolant in machining: A review. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 69, 163–173. [Google Scholar] [CrossRef]
- Li, C.; Ali, H.M. Enhanced Heat Transfer Mechanism of Nanofluids Minimum Lubrication Grinding. In Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials; IGI Global: Hershey, PA, USA, 2021; pp. 928–950. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. Progress of nanofluid application in machining: A review. Mater. Manuf. Process. 2014, 30, 813–828. [Google Scholar] [CrossRef]
- Chakule, R.R.; Chaudhari, S.S.; Chandratre, K.V.; Patole, P.B.; Talmale, P.S. Nanofluids, micro-lubrications and machining process optimisations—A review. Manuf. Rev. 2023, 10, 1. [Google Scholar] [CrossRef]
- Rifat, M.; Rahman, H.; Das, D. A review on application of nanofluid MQL in machining. AIP Conf. Proc. 2017, 1919, 020015. [Google Scholar] [CrossRef]
- Sidik, N.A.C.; Samion, S.; Ghaderian, J.; Yazid, M.N.A.W.M. Recent progress on the application of nanofluids in minimum quantity lubrication machining: A review. Int. J. Heat Mass Transf. 2017, 108, 79–89. [Google Scholar] [CrossRef]
- Amin, A.R.; Ali, A.; Ali, H.M. Application of Nanofluids for Machining Processes: A Comprehensive Review. Nanomaterials 2022, 12, 4214. [Google Scholar] [CrossRef]
- Pasam, V.K.; Rapeti, P.; Battula, S.B. Efficacy of Nanocutting Fluids in Machining—An Experimental Investigation. Adv. Technol. Innov. 2018, 3, 78. [Google Scholar]
- Lautenschlaeger, M.P.; Stephan, S.; Horsch, M.T.; Kirsch, B.; Aurich, J.C.; Hasse, H. Effects of lubrication on friction and heat transfer in machining processes on the nanoscale: A molecular dynamics approach. Procedia CIRP 2018, 67, 296–301. [Google Scholar] [CrossRef]
- Ibrahim, W. MHD boundary layer flow and heat transfer of micropolar fluid past a stretching sheet with second order slip. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 791–799. [Google Scholar] [CrossRef]
- Khan, R.M.; Ashraf, W.; Sohail, M.; Yao, S.-W.; Al-Kouz, W. On behavioral response of microstructural slip on the development of magnetohydrodynamic micropolar boundary layer flow. Complexity 2020, 2020, 8885749. [Google Scholar] [CrossRef]
- Dawar, A.; Shah, Z.; Tassaddiq, A.; Islam, S.; Kumam, P. Joule heating in magnetohydrodynamic micropolar boundary layer flow past a stretching sheet with chemical reaction and microstructural slip. Case Stud. Therm. Eng. 2021, 25, 100870. [Google Scholar] [CrossRef]
- Salem, A.M.; El-Aziz, M.A.; Abo-Eldahab, E.M.; Abd-Elfatah, I. Effect of variable density on hydromagnetic mixed convection flow of a non-Newtonian fluid past a moving vertical plate. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1485–1493. [Google Scholar] [CrossRef]
- Siddiqa, S.; Asghar, S.; Hossain, M.A. Radiation effects in mixed convection flow of a viscous fluid having temperature-dependent density along a permeable vertical plate. J. Eng. Phys. Thermophys. 2012, 85, 339–348. [Google Scholar] [CrossRef]
- Siddiqa, S.; Hossain, M.A.; Gorla, R.S.R. Temperature-dependent density effect on natural convection flow over a horizontal circular disk. J. Thermophys. Heat Transf. 2016, 30, 890–896. [Google Scholar] [CrossRef]
- Elkaroui, A.; Amamou, A.; Ben Khalifa, R.; Said, N.M.; Gazzah, M.H.; El-Rahman, M.A. Numerical predictions of near field behavior of variable density non-reacting turbulent round jets. Int. J. Heat Mass Transf. 2020, 160, 120201. [Google Scholar] [CrossRef]
- Ullah, Z.; Aldhabani, M.S. Physical Analysis of Thermophoresis and Variable Density Effects on Heat Transfer Assessment along a Porous Stretching Sheet and Their Applications in Nanofluid Lubrication. Lubricants 2023, 11, 172. [Google Scholar] [CrossRef]
- Cossali, G.E.; Tonini, S. Modelling the effect of variable density and diffusion coefficient on heat and mass transfer from a single component spherical drop evaporating in high temperature air streams. Int. J. Heat Mass Transf. 2018, 118, 628–636. [Google Scholar] [CrossRef]
- Laaroussi, N.; Lauriat, G.; Desrayaud, G. Effects of variable density for film evaporation on laminar mixed convection in a vertical channel. Int. J. Heat Mass Transf. 2009, 52, 151–164. [Google Scholar] [CrossRef]
- Ashraf, M.; Ullah, Z. Effects of variable density on oscillatory flow around a non-conducting horizontal circular cylinder. AIP Adv. 2020, 10, 015020. [Google Scholar] [CrossRef]
- Sanders, J.P.H.; Sarh, B.; Gökalp, I. Variable density effects in axisymmetric isothermal turbulent jets: A comparison between a first-and a second-order turbulence model. Int. J. Heat Mass Transf. 1997, 40, 823–842. [Google Scholar] [CrossRef]
- Han, Z.; Reitz, R.D. A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling. Int. J. Heat Mass Transf. 1997, 40, 613–625. [Google Scholar] [CrossRef]
- Yoo, G.; So, R. Variable density effects on axisymmetric sudden-expansion flows. Int. J. Heat Mass Transf. 1989, 32, 105–120. [Google Scholar] [CrossRef]
- Prabhu, S.V.; Mahulikar, S.P. Effects of density and thermal conductivity variations on entropy generation in gas micro-flows. Int. J. Heat Mass Transf. 2014, 79, 472–485. [Google Scholar] [CrossRef]
- Yeranee, K.; Rao, Y.; Yang, L.; Li, H. Enhanced thermal performance of a pin-fin cooling channel for gas turbine blade by density-based topology optimization. Int. J. Therm. Sci. 2022, 181, 107783. [Google Scholar] [CrossRef]
- Yan, H.-N.; Liu, C.-L.; Zhang, L.; Bai, X.-H.; Zhang, F. Effects of viscosity and density on film cooling effectiveness of turbine blade with pressure gradient and surface curvature. Int. J. Therm. Sci. 2023, 193, 108517. [Google Scholar] [CrossRef]
- Ullah, Z.; Akkurt, N.; Alrihieli, H.F.; Eldin, S.M.; Alqahtani, A.M.; Hussanan, A.; Ashraf, M.; Jabeen, M. Temperature-Dependent Density and Magnetohydrodynamic Effects on Mixed Convective Heat Transfer along Magnetized Heated Plate in Thermally Stratified Medium Using Keller Box Simulation. Appl. Sci. 2022, 12, 11461. [Google Scholar] [CrossRef]
- Ullah, Z.; El-Zahar, E.; Aldhabani, M.S.; Alrihieli, H.F.; Seddek, L.F. Heat transfer assessment with entropy generation and thermal density effects on boundary layer flow of magneto nanofluid across the stretching sheet under magnetic field. Therm. Sci. Eng. Prog. 2023, 43, 101955. [Google Scholar] [CrossRef]
- Gamaoun, F.; Ullah, Z.; Ahammad, N.A.; Fadhl, B.M.; Makhdoum, B.M.; Khan, A.A. Effects of thermal radiation and variable density of nanofluid heat transfer along a stretching sheet by using Keller Box approach under magnetic field. Therm. Sci. Eng. Prog. 2023, 41, 101815. [Google Scholar] [CrossRef]
- Dolatabadi, N.; Rahmani, R.; Rahnejat, H.; Garner, C.P.; Brunton, C. Performance of poly alpha olefin nanolubricant. Lubricants 2020, 8, 17. [Google Scholar] [CrossRef]
1.0 | 1.116690859808825 | 0.917039128307756 | 0.892601403110183 |
2.0 | 0.307505841434577 | 0.729538072563911 | 1.122378468495322 |
3.0 | 0.484942522867972 | 0.473890818701673 | 1.262275440358294 |
4.0 | 1.267537306821681 | 0.186891654885512 | 1.370478364789618 |
5.0 | 2.043499336076714 | 0.117297572381414 | 1.462084422804949 |
0.1 | 2.183396932316465 | 1.413888055062002 | 1.349043083809308 |
0.3 | 2.310935199782845 | 0.603348871052019 | 1.366341806440679 |
0.5 | 2.432294288980072 | 0.225416928317450 | 1.383769945241027 |
0.7 | 2.547505480184784 | 1.062897609657398 | 1.401183250674839 |
0.9 | 2.656803884505053 | 1.901905836106870 | 1.418483648737034 |
Pr | Ibrahim [21] | Khan et al. [22] | Dawar et al. [23] | Present Results |
---|---|---|---|---|
0.72 | 0.4636 | 0.4623 | 0.4636 | 0.4617 |
1.0 | 0.5822 | 0.5809 | 0.5819 | 0.5811 |
3.0 | 1.1652 | 1.1634 | 1.1651 | 1.1645 |
10.0 | 2.3080 | 2.3047 | 2.3079 | 2.3071 |
100.0 | 7.7657 | 7.7552 | 7.7656 | 7.7639 |
Dawar et al. [23] | Present Results | ||||
---|---|---|---|---|---|
0.0 | 0.967745 | 0.967631 | |||
0.5 | 0.722754 | 0.722733 | |||
1.0 | 0.313306 | 0.313289 | |||
1.0 | 0.166978 | 0.166877 | |||
2.0 | 0.293754 | 0.293743 | |||
3.0 | 0.330798 | 0.330781 | |||
1.0 | 0.716246 | 0.716185 | |||
2.0 | 1.142754 | 1.142747 | |||
3.0 | 1.472208 | 1.472203 | |||
0.1 | 0.586193 | 0.586181 | |||
0.2 | 0.643186 | 0.643191 | |||
0.3 | 0.695175 | 0.695169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, Z.; Hussain, A.; Aldhabani, M.S.; Altaweel, N.H.; Shahab, S. Significance of Temperature-Dependent Density on Dissipative and Reactive Flows of Nanofluid along Magnetically Driven Sheet and Applications in Machining and Lubrications. Lubricants 2023, 11, 410. https://doi.org/10.3390/lubricants11090410
Ullah Z, Hussain A, Aldhabani MS, Altaweel NH, Shahab S. Significance of Temperature-Dependent Density on Dissipative and Reactive Flows of Nanofluid along Magnetically Driven Sheet and Applications in Machining and Lubrications. Lubricants. 2023; 11(9):410. https://doi.org/10.3390/lubricants11090410
Chicago/Turabian StyleUllah, Zia, Ahmad Hussain, Musaad S. Aldhabani, Nifeen H. Altaweel, and Sana Shahab. 2023. "Significance of Temperature-Dependent Density on Dissipative and Reactive Flows of Nanofluid along Magnetically Driven Sheet and Applications in Machining and Lubrications" Lubricants 11, no. 9: 410. https://doi.org/10.3390/lubricants11090410
APA StyleUllah, Z., Hussain, A., Aldhabani, M. S., Altaweel, N. H., & Shahab, S. (2023). Significance of Temperature-Dependent Density on Dissipative and Reactive Flows of Nanofluid along Magnetically Driven Sheet and Applications in Machining and Lubrications. Lubricants, 11(9), 410. https://doi.org/10.3390/lubricants11090410