Molecular Dynamics Simulations of Lubricant Supply in Porous Polyimide Bearing Retainers
Abstract
:1. Introduction
2. Model
3. Results and Discussion
3.1. Rotation Speed
3.2. Rotation Radius
3.3. Pore Size
3.4. Mechanism of Lubricant Supply
4. Conclusions
- The capillary effect keeps the lubricant in the pore at rest. As the pore size increases, the capillary force acting on the lubricant decreases. When the pore begins to rotate, the lubricant may exit the pore due to the centrifugal effect generated by the rotation.
- For the same pore size, the centrifugal force generated by low speed and small rotation radius is small, resulting in the lubricant surface remaining concave. As the rotation speed or the rotation radius increases, the centrifugal force acting on the lubricant also increases. When the centrifugal force increases beyond a certain threshold, the lubricant will exit the pore.
- During stable rotation, the lubricant supply behavior is jointly influenced by both the centrifugal effect and the capillary effect. As the rotation speed of the pore increases, the centrifugal force may surpass the capillary force, thereby causing the lubricant to exit the pore.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, Y.; Becker, T.C.; Hamaguchi, H. Failure of double friction pendulum bearings under pulse-type motions. Earthq. Eng. Struct. Dyn. 2017, 46, 715–732. [Google Scholar] [CrossRef]
- Sathyan, K.; Gopinath, K.; Lee, S.H.; Hsu, H.Y. Bearing Retainer Designs and Retainer Instability Failures in Spacecraft Moving Mechanical Systems. Tribol. Trans. 2012, 55, 503–511. [Google Scholar] [CrossRef]
- Gardos, M.N.; Tiernan, T.O.; Taylor, M.L.; Walters, D.C.; Terwilliger, D.T.; Fehrenbacher, L.L. Sorption of lubricant additives by porous plastic retainer materials. ASLE Trans. 2008, 22, 293–300. [Google Scholar] [CrossRef]
- Soriano, B.L.; Gardos, M.N.; Buller, B.W. Polyimide Composite Retainer Materials Optimized for Minimal Wear and Film Transfer. Tribol. Trans. 1993, 36, 670–678. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, P.; Liang, H.; Wang, W. Molecular dynamics simulations of lubricant recycling in porous polyimide retainers of bearing. Langmuir 2021, 37, 2426–2435. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, D.; Wang, Q.; Ruan, H.; Wang, T. Effect of Porosity on the Friction Properties of Porous Polyimide Impregnated with Poly-α-Olefin in Different Lubrication Regimes. Tribol. Lett. 2020, 68, 102. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, C.; Wang, Q.H.; Wang, T.M. High thermal stability and wear resistance of porous thermosetting heterocyclic polyimide impregnated with silicone oil. Tribol. Int. 2019, 140, 105728. [Google Scholar] [CrossRef]
- Bialke, W.; Hansell, E. A newly discovered branch of the fault tree explaining systemic reaction wheel failures and anomalies. In Proceedings of the 17th European Space Mechanisms and Tribology Symposium, Hatfield, UK, 20–22 September 2017; pp. 20–22. [Google Scholar]
- Wan, C.X.; Jia, D.; Zhan, S.P.; Zhang, W.L.; Yang, T.; Li, Y.H.; Duan, H.T. Preparation and tribological behavior of high-temperature oil-containing porous polyimides. Polym. Eng. Sci. 2023, 63, 1022–1031. [Google Scholar] [CrossRef]
- Yan, Y.H.; Yang, C.W.; Zhou, Y.F.; Dong, W.B.; Yan, P.J.; Jia, Z.N. Study on preparation process parameters and tribological properties of porous PI materials. Ind. Lubr. Tribol. 2022, 74, 205–210. [Google Scholar] [CrossRef]
- Jia, Z.; Yan, Y.; Wang, W. Preparation and tribological properties of PI oil-bearing material with controllable pore size. Ind. Lubr. Tribol. 2017, 69, 88–94. [Google Scholar] [CrossRef]
- Ye, J.; Li, J.; Tao, Q.; Huang, H.; Zhou, N. Effects of surface pore size on the tribological properties of oil-impregnated porous polyimide material. Wear 2021, 484–485, 204042. [Google Scholar] [CrossRef]
- Ma, Y.-W.; Jeong, M.Y.; Lee, S.-M.; Shin, B.S. Fabrication of a high-density nano-porous structure on polyimide by using ultraviolet laser irradiation. J. Korean Phys. Soc. 2016, 68, 668–673. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; Huang, W.; Wang, X. Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication. Wear 2017, 380–381, 52–58. [Google Scholar] [CrossRef]
- Ruan, H.; Zhang, Y.; Li, S.; Yang, L.; Wang, C.; Wang, T.; Wang, Q. Effect of temperature on the friction and wear performance of porous oil-containing polyimide. Tribol. Int. 2021, 157, 106891. [Google Scholar] [CrossRef]
- MacNeill, G.F. Porous Material Development for Instrument-Ball-Bearing Retainer Applications; MIT Charles Stark Draper Laboratory: Cambridge, MA, USA, 1973. [Google Scholar]
- Bertrand, P.A.; Carre, D.J. Oil exchange between ball bearings and porous polyimide ball bearing retainers. Tribol. Trans. 1997, 40, 294–302. [Google Scholar] [CrossRef]
- Marchetti, M.; Meurisse, M.H.; Vergne, P.; Sicre, J.; Durand, M. Analysis of oil supply phenomena by sintered porous reservoirs. Tribol. Lett. 2001, 10, 163–170. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Liang, H.; Zhu, P. Molecular dynamics simulations of lubricant outflow in porous polyimide retainers of bearings. Langmuir 2021, 37, 9162–9169. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Liang, H.; Zhu, P. Study on Lubricant Release-Recycle Performance of Porous Polyimide Retainer Materials. Langmuir ACS J. Surf. Colloids 2022, 38, 11440–11450. [Google Scholar] [CrossRef]
- Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; de Vries, A.H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [Google Scholar] [CrossRef]
- Marrink, S.J.; de Vries, A.H.; Mark, A.E. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 2004, 108, 750–760. [Google Scholar] [CrossRef]
- Lindahl, E.; Hess, B.; Van Der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Model. 2001, 7, 306–317. [Google Scholar] [CrossRef]
- Lim, T.-C. Mathematical connections between bond-stretching potential functions. J. Math. Chem. 2003, 33, 29–37. [Google Scholar] [CrossRef]
- Mayo, S.L.; Olafson, B.D.; Goddard, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, P.; Liang, H.; Wang, W. Characteristic parameter to predict the lubricant outflow from porous polyimide retainer material. Tribol. Int. 2022, 173, 107596. [Google Scholar] [CrossRef]
- Amarasinghe, P.M.; Anandarajah, A.; Ghosh, P. Molecular dynamic study of capillary forces on clay particles. Appl. Clay Sci. 2014, 88–89, 170–177. [Google Scholar] [CrossRef]
D (nm) | 10 | 20 | 30 |
---|---|---|---|
PI chains | 3340 | 13,763 | 30,211 |
PAO particles | 2518 | 4230 | 5992 |
Type | C4H7 | C4H8 | C4H9 | C6 | C6O | C2O2N |
---|---|---|---|---|---|---|
C4H7 | 3.4 | 3.4 | 3.4 | 3.4 | 2.6 | 2.6 |
C4H8 | 3.4 | 3.4 | 3.4 | 3.4 | 2.6 | 2.6 |
C4H9 | 3.4 | 3.4 | 3.4 | 3.4 | 2.6 | 2.6 |
C6 | 3.4 | 3.4 | 3.4 | 3.4 | 2.6 | 2.6 |
C6O | 2.6 | 2.6 | 2.6 | 2.6 | 4.2 | 4.2 |
C2O2N | 2.6 | 2.6 | 2.6 | 2.6 | 4.2 | 4.2 |
Materials | PAO | PI | ||
---|---|---|---|---|
Type | Small | Middle | Big | |
β0(°) | 66 | 117 | 172 | 180 |
Rotation Speed ω (rpm) | 1000 | 5000 | 10,000 |
---|---|---|---|
Centrifugal force before equivalent F (nN) | 1.53 × 10−13 | 3.83 × 10−12 | 1.53 × 10−11 |
Centrifugal force after equivalent F’ (nN) | 7.65 × 10−7 | 1.91 × 10−5 | 7.65 × 10−5 |
Rotation Radii r (mm) | 10 | 50 | 100 | 150 |
---|---|---|---|---|
Centrifugal force before equivalent F (nN) | 1.02 × 10−12 | 5.1 × 10−12 | 1.02 × 10−11 | 1.53 × 10−11 |
Centrifugal force after equivalent F’ (nN) | 3.4 × 10−7 | 8.48 × 10−6 | 3.47 × 10−5 | 7.65 × 10−5 |
Pore Diameter D (nm) | 10 | 20 | 30 |
---|---|---|---|
Axial capillary force Fv (nN) | 2.89 × 10−4 | 1.48 × 10−5 | 1.14 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Wang, C.; Zhou, G.; Liu, F.; Wang, W.; Zhu, P. Molecular Dynamics Simulations of Lubricant Supply in Porous Polyimide Bearing Retainers. Lubricants 2024, 12, 343. https://doi.org/10.3390/lubricants12100343
Chen W, Wang C, Zhou G, Liu F, Wang W, Zhu P. Molecular Dynamics Simulations of Lubricant Supply in Porous Polyimide Bearing Retainers. Lubricants. 2024; 12(10):343. https://doi.org/10.3390/lubricants12100343
Chicago/Turabian StyleChen, Wenbin, Chong Wang, Gang Zhou, Fengbin Liu, Wenzhong Wang, and Pengzhe Zhu. 2024. "Molecular Dynamics Simulations of Lubricant Supply in Porous Polyimide Bearing Retainers" Lubricants 12, no. 10: 343. https://doi.org/10.3390/lubricants12100343
APA StyleChen, W., Wang, C., Zhou, G., Liu, F., Wang, W., & Zhu, P. (2024). Molecular Dynamics Simulations of Lubricant Supply in Porous Polyimide Bearing Retainers. Lubricants, 12(10), 343. https://doi.org/10.3390/lubricants12100343