Effect of Thermal Load Caused by Tread Braking on Crack Propagation in Railway Wheels on Long Downhill Ramps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Parameters
2.2. Calculation Process
2.3. Thermomechanical Coupling Theory
2.4. Virtual Crack Closure Method
3. Finite Element Modeling
3.1. Physical Modeling of Thermal Cracks
3.2. Boundary Conditions of Thermal Analysis
3.2.1. Heat Flux Boundary
3.2.2. Convection Boundary
3.3. Boundary Conditions of Mechanical Analysis
4. Numerical Results and Discussion
4.1. Calculated Working Conditions
4.1.1. Route Condition
4.1.2. Wheel–Rail Contact Position
4.2. Temperature Field of Wheel Tread
4.3. Effect of Wheel–Rail Rolling Contact Load on Thermal Crack Propagation
4.4. Effect of Wheel–Rail Rolling Contact Load Superimposed on Wheel–Brake Shoe Frictional Heat Load on Thermal Crack Propagation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
v | The virtual velocity vector |
σ | The Cauchy stress tensor |
d | The virtual strain rate tensor |
b | The body force vector |
t | The surface traction vector |
q | The heat flux vector |
ρ | The material density |
T | The temperature value |
The time derivative of internal energy per unit volume | |
r | The heat generation rate per unit volume |
qn | The normal heat flux |
i | The oblique crack tip node |
j, j* | The two overlapping nodes in the crack plane closest to the tip node i |
h1, h2, l1, l2 | Denote the dimensions of the mesh in the vicinity of node i |
o′x′y′z′ | Local coordinate system |
Fz′i | The nodal force on crack tip node i in the z’ direction |
Δuz′(j,j*) | The displacement difference between nodes j and j* in the z’ direction |
The correction associated with mesh inhomogeneity | |
E | Young’s modulus |
ν | Poisson’s ratio |
Keff | The equivalent stress intensity factor |
Wf1/2 | Friction work into the wheel/brake shoe |
Fτ | Tangential force between the wheel and brake shoe |
FN | Normal force between the wheel and brake shoe |
μ | Coefficient of friction between the wheel and brake shoe |
Aw | Wheel heat flux area |
As | Brake shoe heat flux area |
Kw | Thermal conductivity of the wheel |
Ks | Thermal conductivity of the brake shoe |
ρw | Density of the wheel |
ρs | Density of the brake shoe |
cw | Specific heat capacity of the wheel |
cs | Specific heat capacity of the brake shoe |
L | The length of the brake shoe |
δ | The effective contact width of the wheel–brake shoe |
r | The radius of the wheel |
κ | The contact ratio of the wheel and the brake shoe |
η1 | Heat partitioning factors of the wheel |
η2 | Heat partitioning factors of the brake shoe |
q1 | The heat flux into the wheel |
q2 | The heat flux into the brake shoe |
Re | The Reynolds number |
νa | The air kinematic viscosity |
Vh | The fluid velocity at a point of the wheel |
Rw | The wheel radius |
Pr | The Prandtl constant |
ρa | Density of air |
ca | Specific heat of air mass |
λa | Thermal conductivity of air |
Nu | The Nusselt number |
ha | The convective coefficient |
pn | Contact patch normal pressure |
pτ | Contact patch tangential stress |
x, y | Longitudinal and transverse direction of the wheel–rail contact patch |
P | Wheel load |
a, b | Contact patch long half-axis and short half-axis |
μwr | Coefficient of friction between wheel and rail |
References
- Yang, Y.; Mao, B.; Wang, M. Research on freight train operation control simulation on long steep downhill lines. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2021, 7, 05021003. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Spiryagin, M.; Ding, H.H.; Wu, Q.; Guo, J.; Liu, Q.Y.; Wang, W.J. Rail rolling contact fatigue formation and evolution with surface defects. Int. J. Fatigue 2022, 158, 106762. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, L.; Ding, H.H.; Lewis, R.; Liu, Q.Y.; Guo, J.; Wang, W.J. Microstructure evolution of railway pearlitic wheel steels under rolling-sliding contact loading. Tribol. Int. 2021, 154, 106685. [Google Scholar] [CrossRef]
- Steenbergen, M. Rolling contact fatigue: Spalling versus transverse fracture of rails. Wear 2017, 380–381, 96–105. [Google Scholar] [CrossRef]
- Sato, Y. Design of rail head profiles with full use of grinding. Wear 1991, 144, 363–372. [Google Scholar] [CrossRef]
- Steenbergen, M.; Dollevoet, R. On the mechanism of squat formation on train rails–Part II: Growth. Int. J. Fatigue 2013, 47, 373–381. [Google Scholar] [CrossRef]
- Jiang, X.; Li, X.; Li, X.; Cao, S. Rail fatigue crack propagation in high-speed wheel/rail rolling contact. J. Mod. Transp. 2017, 25, 178–184. [Google Scholar] [CrossRef]
- Zhang, S.; Spiryagin, M.; Lin, Q.; Ding, H.H.; Wu, Q.; Guo, J.; Wang, W.J. Study on wear and rolling contact fatigue behaviours of defective rail under different slip ratio and contact stress conditions. Tribol. Int. 2022, 169, 107491. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Spiryagin, M.; Wu, Q.; Ding, H.; Wen, Z.; Wang, W. Gaps, challenges and possible solution for prediction of wheel–rail rolling contact fatigue crack initiation. Railw. Eng. Sci. 2023, 31, 207–232. [Google Scholar] [CrossRef]
- Krishna, V.V.; Hossein-Nia, S.; Casanueva, C.; Stichel, S.; Trummer, G.; Six, K. Rail RCF damage quantification and comparison for different damage models. Railw. Eng. Sci. 2022, 30, 23–40. [Google Scholar] [CrossRef]
- Trummer, G.; Marte, C.; Dietmaier, P.; Sommitsch, C.; Six, K. Modeling surface rolling contact fatigue crack initiation taking severe plastic shear deformation into account. Wear 2016, 352–353, 136–145. [Google Scholar] [CrossRef]
- Dirks, B.; Enblom, R.; Ekberg, A.; Berg, M. The development of a crack propagation model for railway wheels and rails. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 1478–1491. [Google Scholar] [CrossRef]
- Ekberg, A.; Akesson, B.; Kabo, E. Wheel/rail rolling contact fatigue–Probe, predict, prevent. Wear 2014, 314, 2–12. [Google Scholar] [CrossRef]
- Maglio, M.; Vernersson, T.; Nielsen, J.C.O.; Ekberg, A.; Kabo, E. Influence of railway wheel tread damage on wheel–rail impact loads and the durability of wheelsets. Railw. Eng. Sci. 2024, 32, 20–35. [Google Scholar] [CrossRef]
- Taraf, M.; Zahaf, E.H.; Oussouaddi, O.; Zeghloul, A. Numerical analysis for predicting the rolling contact fatigue crack initiation in a railway wheel steel. Tribol. Int. 2010, 43, 585–593. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Lian, S.; Wang, L. Probabilistic prediction model for initiation of RCF cracks in heavy-haul railway. Int. J. Fatigue 2011, 33, 212–216. [Google Scholar]
- Liu, Y.; Stratman, B.; Mahadevan, S. Fatigue crack initiation life prediction of railroad wheels. Int. J. Fatigue 2006, 28, 747–756. [Google Scholar] [CrossRef]
- Ekberg, A.; Kabo, E. Fatigue of railway wheels and rails under rolling contact and thermal loading—An overview. Wear 2005, 258, 1288–1300. [Google Scholar] [CrossRef]
- Ringsberg, J.W.; Loo-Morrey, M.; Josefson, B.L.; Kapoor, A.; Beynon, J.H. Prediction of fatigue crack initiation for rolling contact fatigue. Int. J. Fatigue 2000, 22, 205–215. [Google Scholar] [CrossRef]
- Akama, M.; Matsuda, H.; Doi, H.; Tsujie, M. Fatigue crack initiation life prediction of rails using theory of critical distance and critical plane approach. J. Comput. Sci. Technol. 2012, 6, 54–69. [Google Scholar] [CrossRef]
- Ringsberg, J.W.; Bjarnehed, H.; Johansson, A.; Josefson, B.L. Rolling contact fatigue of rails—Finite element modelling of residual stresses, strains and crack initiation. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2000, 214, 7–19. [Google Scholar] [CrossRef]
- Günay, M.; Korkmaz, M.E.; Özmen, R. An investigation on braking systems used in railway vehicles. Eng. Sci. Technol. Int. J. 2020, 23, 421–431. [Google Scholar] [CrossRef]
- Zhang, H.W.; Ohsaki, S.; Mitao, S.; Ohnuma, M.; Hono, K. Microstructural investigation of white etching layer on pearlite steel rail. Mater. Sci. Eng. A 2006, 421, 191–199. [Google Scholar] [CrossRef]
- Vernersson, T. Temperatures at railway tread braking. Part 1: Modelling. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2007, 221, 167–182. [Google Scholar] [CrossRef]
- Wu, L.; Wen, Z.; Li, W.; Jin, X. Thermo-elastic–plastic finite element analysis of wheel/rail sliding contact. Wear 2011, 271, 437–443. [Google Scholar] [CrossRef]
- Srivastava, J.P.; Sarkar, P.K.; Ranjan, V. Effects of thermal load on wheel–rail contacts: A review. J. Therm. Stress. 2016, 39, 1389–1418. [Google Scholar] [CrossRef]
- Fec, M.C.; Sehitoglu, H. Thermal-mechanical damage in railroad wheels due to hot spotting. Wear 1985, 102, 31–42. [Google Scholar] [CrossRef]
- Moyar, G.J.; Stone, D.H. An analysis of the thermal contributions shelling to railway wheel. Wear 1991, 144, 117–138. [Google Scholar] [CrossRef]
- Kondo, K.; Yoroizaka, K.; Sato, Y. Cause, increase, diagnosis, countermeasures and elimination of shinkansen shelling. Wear 1996, 191, 199–203. [Google Scholar] [CrossRef]
- Suda, Y. Effects of vibration system and rolling conditions on the development of corrugations. Wear 1991, 144, 227–242. [Google Scholar] [CrossRef]
- Vernersson, T.; Caprioli, S.; Kabo, E.; Hansson, H.; Ekberg, A. Wheel tread damage: A numerical study of railway wheel tread plasticity under thermomechanical loading. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2010, 224, 435–443. [Google Scholar] [CrossRef]
- Peng, D.; Jones, R.; Constable, T. A study into crack growth in a railway wheel under thermal stop brake loading spectrum. Eng. Fail. Anal. 2012, 25, 280–290. [Google Scholar] [CrossRef]
- Caprioli, S.; Ekberg, A. Numerical evaluation of the material response of a railway wheel under thermomechanical braking conditions. Wear 2014, 314, 181–188. [Google Scholar] [CrossRef]
- Esmaeili, A.; Ahlström, J.; Ekh, M.; Nikas, D.; Vernersson, T. Modelling of temperature and strain rate dependent behaviour of pearlitic steel in block braked railway wheels. Railw. Eng. Sci. 2021, 29, 362–378. [Google Scholar] [CrossRef]
- Fletcher, D.I. Numerical simulation of near surface rail cracks subject to thermal contact stress. Wear 2014, 314, 96–103. [Google Scholar] [CrossRef]
- Duflot, M. The extended finite element method in thermoelastic fracture mechanics. Int. J. Numer. Methods Eng. 2008, 74, 827–847. [Google Scholar] [CrossRef]
- Bayat, S.H.; Nazari, M.B. Thermally nonlinear analysis of propagating cracks under generalized thermal shock. Int. J. Non-Linear Mech. 2023, 157, 104522. [Google Scholar] [CrossRef]
- Liu, Y.; Tsang, K.S.; Hoh, H.J.; Shi, X.; Pang, J.H.L. Structural fatigue investigation of transverse surface crack growth in rail steels and thermite welds subjected to in-plane and out-of-plane loading. Eng. Struct. 2020, 204, 110076. [Google Scholar] [CrossRef]
- Nejad, R.M.; Shariati, M.; Farhangdoost, K. Prediction of fatigue crack propagation and fractography of rail steel. Theor. Appl. Fract. Mech. 2019, 101, 320–331. [Google Scholar] [CrossRef]
- Handa, K.; Kimura, Y.; Mishima, Y. Surface cracks initiation on carbon steel railway wheels under concurrent load of continuous rolling contact and cyclic frictional heat. Wear 2010, 268, 50–58. [Google Scholar] [CrossRef]
- Handa, K.; Morimoto, F. Influence of wheel/rail tangential traction force on thermal cracking of railway wheels. Wear 2012, 289, 112–118. [Google Scholar] [CrossRef]
- Tucho, A.; Indraratna, F.; Ngo, T. Stress-deformation analysis of rail substructure under moving wheel load. Transp. Geotech. 2022, 36, 100805. [Google Scholar] [CrossRef]
- Ringsberg, J.W.; Lindbäck, T. Rolling contact fatigue analysis of rails inculding numerical simulations of the rail manufacturing process and repeated wheel–rail contact loads. Int. J. Fatigue 2003, 25, 547–558. [Google Scholar] [CrossRef]
- Écsi, L.; Élesztős, P. An improved heat equation for fully coupled thermal-structural finite element analysis using small strain formulation. Appl. Mech. Mater. 2014, 611, 294–303. [Google Scholar] [CrossRef]
- Rybicki, E.F.; Kanninen, M.F. A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 1977, 9, 931–938. [Google Scholar] [CrossRef]
- Shivakumar, K.N.; Tan, P.W.; Newman, J.C., Jr. A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies. Int. J. Fract. 1988, 36, 43–50. [Google Scholar] [CrossRef]
- Somà, A.; Aimar, M.; Zampieri, N. Simulation of the thermal behavior of cast iron brake block during braking maneuvers. Appl. Sci. 2021, 11, 5010. [Google Scholar] [CrossRef]
- Pradhan, S.; Samantaray, A.K. A recursive wheel wear and vehicle dynamic performance evolution computational model for rail vehicles with tread brakes. Vehicles 2019, 1, 88–115. [Google Scholar] [CrossRef]
- Haidari, A.; Tehrani, P.H. Thermal load effects on fatigue life of a cracked railway wheel. Lat. Am. J. Solids Struct. 2015, 12, 1144–1157. [Google Scholar] [CrossRef]
- Churchill, S.W.; Bernstein, M. A Correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. J. Heat Transf. 1977, 99, 300–306. [Google Scholar] [CrossRef]
- Churchill, S.W.; Usagi, R. A general expression for the correlation of rates of transfer and other phenomena. AIChE J. 1972, 18, 1121–1128. [Google Scholar] [CrossRef]
- Yuan, Z.; Tian, C.; Wu, M.; Zhou, J.; Chen, C. An innovative heat source model for calculating wheel/rail contact temperature. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 1274–1283. [Google Scholar] [CrossRef]
- Wu, J.; Petrov, R.H.; Naeimi, M.; Li, Z.; Dollevoet, R.; Sietsma, J. Laboratory simulation of martensite formation of white etching layer in rail steel. Int. J. Fatigue 2016, 91, 11–20. [Google Scholar] [CrossRef]
Temperature (°C) | Specific Heat Capacity (J/(kg·°C)) | Thermal Conductivity (W/(m·°C)) | Coefficient of Thermal Expansion (10−6/°C) | Density (kg/m3) | Poisson’s Ratio |
---|---|---|---|---|---|
0 | 434.02 | 48.30 | 1.0645 | 7833 | 0.3 |
100 | 473.21 | 46.43 | 1.1293 | ||
200 | 512.40 | 44.56 | 1.1944 | ||
300 | 551.59 | 42.69 | 1.2589 | ||
400 | 590.77 | 40.83 | 1.3237 | ||
500 | 629.96 | 38.96 | 1.3885 |
Temperature (°C) | Young’s Modulus (GPa) |
---|---|
25 | 200 |
100 | 190 |
200 | 180 |
300 | 170 |
400 | 160 |
500 | 150 |
600 | 140 |
700 | 130 |
800 | 120 |
Temperature (°C) | Specific Heat Capacity (J/(kg·°C)) | Thermal Conductivity (W/(m·°C)) | Young’s Modulus (MPa) | Density (kg/m3) | Poisson’s Ratio |
---|---|---|---|---|---|
27 | 520 | 0.9970 | 400 | 2340 | 0.28 |
200 | 0.9606 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chen, X.; Tao, G.; Wen, Z. Effect of Thermal Load Caused by Tread Braking on Crack Propagation in Railway Wheels on Long Downhill Ramps. Lubricants 2024, 12, 356. https://doi.org/10.3390/lubricants12100356
Zhang J, Chen X, Tao G, Wen Z. Effect of Thermal Load Caused by Tread Braking on Crack Propagation in Railway Wheels on Long Downhill Ramps. Lubricants. 2024; 12(10):356. https://doi.org/10.3390/lubricants12100356
Chicago/Turabian StyleZhang, Jinyu, Xun Chen, Gongquan Tao, and Zefeng Wen. 2024. "Effect of Thermal Load Caused by Tread Braking on Crack Propagation in Railway Wheels on Long Downhill Ramps" Lubricants 12, no. 10: 356. https://doi.org/10.3390/lubricants12100356
APA StyleZhang, J., Chen, X., Tao, G., & Wen, Z. (2024). Effect of Thermal Load Caused by Tread Braking on Crack Propagation in Railway Wheels on Long Downhill Ramps. Lubricants, 12(10), 356. https://doi.org/10.3390/lubricants12100356