Power Losses of Oil-Bath-Lubricated Ball Bearings—A Focus on Churning Losses
Abstract
:1. Introduction
2. Experiments on Power Loss in Rolling Element Bearings
2.1. Test Rig and Test Procedure
2.2. Bearing Geometry
2.3. Power Loss Measurement Results
3. Drag Loss Model
3.1. Low Submersion Level
3.2. High Submersion Level
3.3. Drag Power Loss Model Formulations
4. Comparison of Harris Model with Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol. Int. 2019, 135, 389–396. [Google Scholar] [CrossRef]
- Levillain, A.; Ameye, S. Splash Lubrication Simulation of a High-Speed EV Reducer Using a SPH Tool. In Proceedings of the SIA SImulation Numérique “La Simulation Numérique au Cœur de L’innovation Automobile”, Digital Edition, 7–8 April 2021; Available online: https://www.sia.fr/evenements/231-sia-simulation-numerique (accessed on 18 October 2024).
- Niel, D.; Changenet, C.; Ville, F.; Octrue, M. Thermomecanical study of high speed rolling element bearing: A simplified approach. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2019, 233, 541–552. [Google Scholar] [CrossRef]
- de Cadier de Veauce, F.; Darul, L.; Marchesse, Y.; Touret, T.; Changenet, C.; Ville, F.; Amar, L.; Fossier, C. Power Losses of Oil-Jet Lubricated Ball Bearings with Limited Applied Load: Part 2—Experiments and Model Validation. Tribol. Trans. 2023, 66, 822–831. [Google Scholar] [CrossRef]
- Harris, T.A. Rolling Bearing Analysis, 3rd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1991; ISBN 0-471-51349-0. [Google Scholar]
- SKF Group. Rolling Bearings; SKF Group: Göteborg, Sweden, 2013; 1375p. [Google Scholar]
- Fernandes, C.M.; Marques, P.M.; Martins, R.C.; Seabra, J.H. Gearbox power loss. Part I: Losses in rolling bearings. Tribol. Int. 2015, 88, 298–308. [Google Scholar] [CrossRef]
- Dindar, A.; Hong, I.; Garg, A.; Kahraman, A. A Methodology to Measure Power Losses of Rolling Element Bearings under Combined Radial and Axial Loading Conditions. Tribol. Trans. 2022, 65, 137–152. [Google Scholar] [CrossRef]
- Jones, A.B. Ball Motion and Sliding Friction in Ball Bearings. J. Basic Eng. 1959, 81, 1–12. [Google Scholar] [CrossRef]
- Coulomb, C.A. Théorie Des Machines Simples; Hachette Livre BNF: Paris, France, 1821. [Google Scholar]
- Biboulet, N.; Houpert, L. Hydrodynamic force and moment in pure rolling lubricated contacts. part 2: Point contacts. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2010, 224, 777–787. [Google Scholar] [CrossRef]
- Houpert, L. Piezoviscous-rigid rolling and sliding traction forces, application: The rolling element-cage pocket contact. J. Tribol. 1987, 109, 363–370. [Google Scholar] [CrossRef]
- Brewe, D.E.; Hamrock, B.J. Analysis of Starvation Effects on Hydrodynamic Lubrication in Nonconforming Contacts. Trans. ASME J. Lubr. Technol. 1982, 104, 410–417. [Google Scholar] [CrossRef]
- Tevaarwerk, J.; Johnson, K.L. The influence of fluid rheology on the performance of traction drives. ASLE Trans. J. Lubr. Technol. 1979, 101, 266–274. [Google Scholar] [CrossRef]
- Johnson, K.L. Regimes of Elastohydrodynamic Lubrication. J. Mech. Eng. Sci. 1970, 12, 9–16. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory, 8th ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Rumbarger, J.; Filetti, E.; Gubernick, D. Gas Turbine Engine Mainshaft Roller Bearing-System Analysis. J. Lubr. Technol. 1973, 95, 401–416. [Google Scholar] [CrossRef]
- Gupta, P.K. Advanced Dynamics of Rolling Elements; Springer: New York, NY, USA, 1984; ISBN 978-1-4612-5276-4. [Google Scholar]
- Darul, L.; Touret, T.; Changenet, C.; Ville, F. Power Loss Analysis of an Oil-Jet Lubricated Angular Contact Ball Bearing: Theoretical and Experimental Investigations. Lubricants 2024, 12, 14. [Google Scholar] [CrossRef]
- Russell, T.; Sadeghi, F. The effects of lubricant starvation on ball bearing cage pocket friction. Tribol. Int. 2022, 173, 107630. [Google Scholar] [CrossRef]
- Aamer, S.; Sadeghi, F.; Russell, T.; Peterson, W.; Meinel, A.; Grillenberger, H. Lubrication, Flow Visualization, and Multiphase CFD Modeling of Ball Bearing Cage. Tribol. Trans. 2022, 65, 1088–1098. [Google Scholar] [CrossRef]
- Arya, U.; Sadeghi, F.; Aamer, S.; Meinel, A.; Grillenberger, H. In Situ Visualization and Analysis of Oil Starvation in Ball Bearing Cages. Tribol. Trans. 2023, 66, 965–978. [Google Scholar] [CrossRef]
- Pouly, F.; Changenet, C.; Ville, F.; Velex, P.; Damiens, B. Power Loss Predictions in High-Speed Rolling Element Bearings Using Thermal Networks. Tribol. Trans. 2010, 53, 957–967. [Google Scholar] [CrossRef]
- Parker, R.J. Comparison of Predicted Performance of Angular and Experimental Thermal Contact Ball Bearings. NASA Tech. Pap. 1984, 2275, 1–16. [Google Scholar]
- Marchesse, Y.; Changenet, C.; Ville, F. Numerical Investigations on Drag Coefficient of Balls in Rolling Element Bearing. Tribol. Trans. 2014, 57, 778–785. [Google Scholar] [CrossRef]
- Marchesse, Y.; Changenet, C.; Ville, F. Computational Fluid Dynamics Methodology to Estimate the Drag Coefficient of Balls in Rolling Element Bearings. Dynamics 2024, 4, 303–321. [Google Scholar] [CrossRef]
- Peterson, W.; Russell, T.; Sadeghi, F.; Berhan, M.T.; Stacke, L.E.; Ståhl, J. A CFD investigation of lubricant flow in deep groove ball bearings. Tribol. Int. 2021, 154, 106735. [Google Scholar] [CrossRef]
- Gao, W.; Nelias, D.; Lyu, Y.; Boisson, N. Numerical investigations on drag coefficient of circular cylinder with two free ends in roller bearings. Tribol. Int. 2018, 123, 43–49. [Google Scholar] [CrossRef]
- Morales-Espejel, G.; Wemekamp, A. An engineering drag losses model for rolling bearings. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 237, 1–16. [Google Scholar] [CrossRef]
- Schaeffler Technologies. Lubrication of Rolling Bearings; Schaeffler Technologies: Fort Mill, SC, USA, 2013. [Google Scholar]
- Peterson, W.; Russel, T.; Sadeghi, F.; Tekletsion Berhan, M. Experimental and analytical investigation of fluid drag losses in rolling element bearings. Tribol. Int. 2021, 161, 107106. [Google Scholar] [CrossRef]
- Hannon, W.M.; Barr, T.A.; Froelich, S.T. Rolling-element bearing heat transfer—Part III: Experimental validation. J. Tribol. 2015, 137, 13. [Google Scholar] [CrossRef]
- Boni, J.B. Modélisation Thermique d’un Train Epicycloïdal Lubrifié par Barbotage. Ph.D. Thesis, University of Lyon, Lyon, France, 2020. [Google Scholar]
- Nelias, D.; Seabra, J.; Flamand, L.; Dalmaz, G. Power loss prediction in high-speed roller bearings. Tribol. Ser. 1994, 27, 465–478. [Google Scholar]
- Paleu, V.; Nelias, D. On Kerosene Lubrication of Hybrid Ball Bearings. In Proceedings of the International Conference on Diagnosis and Prediction in Mechanical Engineering Systems, Galati, Romania, 26–27 October 2007; pp. 50–56. [Google Scholar]
- Isbin, H.S.; Sher, M.; Eddy, K.C. Void Fractions in Two-phase Steam-water Flow. Aiche J. 1957, 3, 136–142. [Google Scholar] [CrossRef]
- Takabi, J.; Khonsari, M.M. Experimental testing and thermal analysis of ball bearings. Tribol. Int. 2013, 60, 93–103. [Google Scholar] [CrossRef]
- Giannetti, G.; Meli, E.; Rindi, A.; Ridol, A.; Shi, Z.; Tangredi, A.; Facchini, B.; Fondelli, T.; Massini, D. Modeling and experimental study of power losses in a rolling bearing. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020, 234, 1332–1351. [Google Scholar] [CrossRef]
- Kerrouche, R.; Dadouche, A.; Mamou, M.; Boukraa, S. Power Loss Estimation and Thermal Analysis of an Aero-Engine Cylindrical Roller Bearing. Tribol. Trans. 2021, 64, 1079–1094. [Google Scholar] [CrossRef]
Sensors | Range | Accuracy |
---|---|---|
Torque meter | 0 Nm to 10 Nm | 0.02 Nm |
Thermocouple | −40 °C to +125 °C | 0.5 °C |
Load | 0 kN to 20 kN | 0.4% |
Characteristic | DGBB 6311 | DGBB 6208 |
---|---|---|
120 mm | 80 mm | |
55 mm | 40 mm | |
87.5 mm | 60 mm | |
20.6 mm | 11.9 mm | |
8 | 9 | |
29 mm | 18 mm | |
45 kN | 17.8 kN | |
1.66 | 1.76 |
Kinematic Viscosity at 40 °C (cSt) | Kinematic Viscosity at 100 °C (cSt) | Density at 15 °C (kg/m3) |
---|---|---|
36.6 | 7.8 | 864.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Cadier de Veauce, F.; Marchesse, Y.; Touret, T.; Changenet, C.; Ville, F.; Amar, L.; Fossier, C. Power Losses of Oil-Bath-Lubricated Ball Bearings—A Focus on Churning Losses. Lubricants 2024, 12, 362. https://doi.org/10.3390/lubricants12110362
de Cadier de Veauce F, Marchesse Y, Touret T, Changenet C, Ville F, Amar L, Fossier C. Power Losses of Oil-Bath-Lubricated Ball Bearings—A Focus on Churning Losses. Lubricants. 2024; 12(11):362. https://doi.org/10.3390/lubricants12110362
Chicago/Turabian Stylede Cadier de Veauce, Florian, Yann Marchesse, Thomas Touret, Christophe Changenet, Fabrice Ville, Luc Amar, and Charlotte Fossier. 2024. "Power Losses of Oil-Bath-Lubricated Ball Bearings—A Focus on Churning Losses" Lubricants 12, no. 11: 362. https://doi.org/10.3390/lubricants12110362
APA Stylede Cadier de Veauce, F., Marchesse, Y., Touret, T., Changenet, C., Ville, F., Amar, L., & Fossier, C. (2024). Power Losses of Oil-Bath-Lubricated Ball Bearings—A Focus on Churning Losses. Lubricants, 12(11), 362. https://doi.org/10.3390/lubricants12110362