Tribological Properties of 7A04 Aluminum Alloy Enhanced by Ceramic Coating
Abstract
:1. Introduction
2. Specimen Preparation and Testing
2.1. Coating Preparation
2.1.1. Micro-Arc Oxidation MAO
2.1.2. Hard Anodizing—HA
2.2. Microstructural Characterization
2.3. Tribological Properties
3. Results and Discussion
3.1. Analysis of Microscopic Morphology Before Wear
3.2. Mechanical Properties of the Coatings
3.3. Tribological Properties of the Coatings
3.4. Wear Surface Morphology Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.S.; Yue, X.; Li, Q.Y.; Peng, H.L.; Dong, B.X.; Liu, T.S.; Yang, H.Y.; Fan, J.; Shu, S.L.; Qiu, F.; et al. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Hirsch, J. Recent development in aluminium for automotive applications. Trans. Nonferrous Met. Soc. China 2014, 24, 1995–2002. [Google Scholar] [CrossRef]
- Song, Y.F.; Ding, X.F.; Xiao, L.R.; Zhao, X.J.; Cai, Z.Y.; Guo, L.; Li, Y.W.; Zheng, Z.Z. Effects of two-stage aging on the dimensional stability of Al-Cu-Mg alloy. J. Alloys Compd. 2017, 701, 508–514. [Google Scholar] [CrossRef]
- Heinz, A.; Haszler, A.; Keidel, C.; Moldenhauer, S.; Benedictus, R.; Miller, W.S. Recent development in aluminium alloys for aerospace applications. Mater. Sci. Eng. A 2000, 280, 102–107. [Google Scholar] [CrossRef]
- Vlach, M.; Cizek, J.; Kodetova, V.; Leibner, M.; Cieslar, M.; Harcuba, P.; Bajtosova, L.; Kudrnova, H.; Vlasak, T.; Neubert, V.; et al. Phase transformations in novel hot-deformed Al–Zn–Mg–Cu–Si–Mn–Fe(–Sc–Zr) alloys. Mater. Des. 2020, 193, 108821. [Google Scholar] [CrossRef]
- Mändl, S.; Manova, D. Modification of metals by plasma immersion ion implantation. Surf. Coat. Technol. 2019, 365, 83–93. [Google Scholar] [CrossRef]
- Xiong, L.; Wang, C.; Wu, W.; Xu, L.; Wang, C.; Deng, H.; Cheung, C.F. The surface softening mechanism of AlN ceramic by laser treatment. Surf. Interfaces 2024, 46, 104023. [Google Scholar] [CrossRef]
- Fockaert, L.I.; Pletincx, S.; Boelen, B.; Hauffman, T.; Terryn, H.; Mol, J.M.C. Effect of zirconium-based conversion treatments of zinc, aluminium and magnesium on the chemisorption of ester-functionalized molecules. Appl. Surf. Sci. 2020, 508, 145199. [Google Scholar] [CrossRef]
- Sun, Y. The use of aluminum alloys in structures: Review and outlook. Structures 2023, 57, 105290. [Google Scholar] [CrossRef]
- Dai, Y.; Yan, L.; Hao, J. Review on Micro-Alloying and Preparation Method of 7xxx Series Aluminum Alloys: Progresses and Prospects. Materials 2022, 15, 1216. [Google Scholar] [CrossRef]
- Kikuchi, T.; Takenaga, A.; Natsui, S.; Suzuki, R.O. Advanced hard anodic alumina coatings via etidronic acid anodizing. Surf. Coat. Technol. 2017, 326, 72–78. [Google Scholar] [CrossRef]
- Mora-Sanchez, H.; del Olmo, R.; Rams, J.; Torres, B.; Mohedano, M.; Matykina, E.; Arrabal, R. Hard Anodizing and Plasma Electrolytic Oxidation of an Additively Manufactured Al-Si alloy. Surf. Coat. Technol. 2021, 420, 127339. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, W.; Wang, X.; Wang, Y.; Yue, H.; Li, Q.; Yang, X.; Guo, C.; Li, C. Micro-arc oxidation of Al alloys: Mechanism, microstructure, surface properties, and fatigue damage behavior. J. Mater. Res. Technol. 2023, 23, 4307–4333. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122, 73–93. [Google Scholar] [CrossRef]
- Hongmei, X.; Bin, J.; Changping, T.; Jiahong, D.; Xin, Q.; Fusheng, P. Experimental evaluation of MoS2 nanosheets as lubricant additive in different types of base oil for magnesium alloy/steel pairs. Mater. Res. Express 2019, 6, 066575. [Google Scholar] [CrossRef]
- Mutyala, K.C.; Singh, H.; Fouts, J.A.; Evans, R.D.; Doll, G.L. Influence of MoS2 on the Rolling Contact Performance of Bearing Steels in Boundary Lubrication: A Different Approach. Tribol. Lett. 2016, 61, 20. [Google Scholar] [CrossRef]
- Lv, X.; Zou, G.; Ling, K.; Yang, W.; Mo, Q.; Li, W. Tribological properties of MAO/MoS2 self-lubricating composite coating by microarc oxidation and hydrothermal reaction. Surf. Coat. Technol. 2021, 406, 126630. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, Z.; Tang, S.; Dong, W.; Tong, Q.; Li, W. Influence of graphene particles on the micro-arc oxidation behaviors of 6063 aluminum alloy and the coating properties. Appl. Surf. Sci. 2017, 423, 939–950. [Google Scholar] [CrossRef]
- Li, Z.; Di, S. Preparation and properties of micro-arc oxidation self-lubricating composite coatings containing paraffin. J. Alloys Compd. 2017, 719, 1–14. [Google Scholar] [CrossRef]
- Gecu, R.; Yurekturk, Y.; Tekoglu, E.; Muhaffel, F.; Karaaslan, A. Improving wear resistance of 304 stainless steel reinforced AA7075 aluminum matrix composite by micro-arc oxidation. Surf. Coat. Technol. 2019, 368, 15–24. [Google Scholar] [CrossRef]
- Fei, C.; Hai, Z.; Chen, C.; Yangjian, X. Study on the tribological performance of ceramic coatings on titanium alloy surfaces obtained through microarc oxidation. Prog. Org. Coat. 2009, 64, 264–267. [Google Scholar] [CrossRef]
- Ouyang, J.-H.; Wang, Y.-H.; Liu, Z.-G.; Wang, Y.-M.; Wang, Y.-J. Preparation and high temperature tribological properties of microarc oxidation ceramic coatings formed on Ti 2 AlNb alloy. Wear 2015, 330–331, 239–249. [Google Scholar] [CrossRef]
- Nie, Z.; Lu, H.; Liu, Q.; Chai, G.; Ding, Y.; Xu, G.; Guo, J. Effect of copper introduction on the properties of micro-arc oxidation coating on powder metallurgy aluminum disk. Surf. Coat. Technol. 2024, 479, 130520. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H.; Yang, X.; Gu, Y.; Liu, Y. Local Electrochemical Corrosion of 6061 Aluminum Alloy with Nano-SiO2/MAO Composite Coating. Materials 2023, 16, 6721. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Cheng, D.; Zhu, X.; Yan, Z.; Fu, J.; Yu, J.; Liu, Z.; Yu, G.; Zheng, S. Investigation of a self-lubricating coating for diesel engine pistons, as produced by combined microarc oxidation and electrophoresis. Wear 2018, 394–395, 109–112. [Google Scholar] [CrossRef]
- Zhai, D.; Qiu, T.; Shen, J.; Feng, K. Growth kinetics and mechanism of microarc oxidation coating on Ti−6Al−4V alloy in phosphate/silicate electrolyte. Int. J. Miner. Metall. Mater. 2022, 29, 1991–1999. [Google Scholar] [CrossRef]
- Erfanifar, E.; Aliofkhazraei, M.; Nabavi, H.F.; Rouhaghdam, A.S. Growth kinetics and morphology of microarc oxidation coating on titanium. Surf. Coat. Technol. 2017, 315, 567–576. [Google Scholar] [CrossRef]
- Li, W.; Yan, Z.; Shen, D.; Zhang, Z.; Yang, R. Microstructures and tribological properties of MoS2 overlayers on MAO Al alloy. Tribol. Int. 2023, 181, 108348. [Google Scholar] [CrossRef]
- Jahnichen, T.; Carstens, S.; Franz, M.; Laufer, O.; Wenzel, M.; Matysik, J.; Enke, D. Towards High Surface Area alpha-Al2O3-Mn-Assisted Low Temperature Transformation. Materials 2023, 16, 3047. [Google Scholar] [CrossRef]
- krishna, L.R.; Purnima, A.S.; Wasekar, N.P.; Sundararajan, G. Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys. Metall. Mater. Trans. A 2007, 38, 370–378. [Google Scholar] [CrossRef]
- Li, H.; Kong, S.; Liu, Z.; Wang, Z.; Geng, Y. Hardness Distribution and Growth Behavior of Micro-Arc Oxide Ceramic Film with Positive and Negative Pulse Coordination. Nanomaterials 2024, 14, 842. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Gu, Y.; Liu, S.; Che, J.; Yang, D. Local corrosion behavior and model of micro-arc oxidation HA coating on AZ31 magnesium alloy. Surf. Coat. Technol. 2017, 331, 179–188. [Google Scholar] [CrossRef]
- Zhang, D.; Du, X.; Bai, A.; Wang, L. The synergistic effect of MAO-treated and PAO–graphene oil on tribological properties of Ti6Al4V alloys. Wear 2022, 510–511, 204494. [Google Scholar] [CrossRef]
- Wu, H.; Yin, S.; Du, Y.; Wang, L.; Wang, H. An investigation on the lubrication effectiveness of MoS2 and BN layered materials as oil additives using block-on-ring tests. Tribol. Int. 2020, 151, 106516. [Google Scholar] [CrossRef]
- Jin, L.; Li, Y.; Liu, C.; Fan, X.; Zhu, M. Friction mechanism of DLC/MAO wear-resistant coatings with porous surface texture constructed in-situ by micro-arc oxidation. Surf. Coat. Technol. 2023, 473, 130010. [Google Scholar] [CrossRef]
- Rajak, D.K.; Kumar, A.; Behera, A.; Menezes, P.L. Diamond-Like Carbon (DLC) Coatings: Classification, Properties, and Applications. Appl. Sci. 2021, 11, 4445. [Google Scholar] [CrossRef]
- Liu, Y.; Erdemir, A.; Meletis, E.I. A study of the wear mechanism of diamond-like carbon films. Surf. Coat. Technol. 1996, 82, 48–56. [Google Scholar] [CrossRef]
Element | Zn | Mg | Cu | Cr | Si | Mn | Al |
---|---|---|---|---|---|---|---|
Content | 5–7 | 1.8–2.8 | 1.4–2 | 0.1–0.25 | 0.4 | 0.2–0.6 | Balance |
Component | Value |
---|---|
Positive voltage (V) | 460 |
Negative voltage (V) | 60 |
Positive frequency (Hz) | 500 |
Duty cycle (%) | 20 |
pH | 12.3 |
Oxidation time (min) | 90 |
Current density (A/dm2) | 3 |
Depositing temperature | ≤45 °C |
MAO Electrolyte | 10 g/L Na2SiO3, 5 g/L NaOH, 4 g/L HMC |
MAO/MoS2 Electrolyte | 10 g/L Na2SiO3, 5 g/L NaOH, 4 g/L MoS2, 4 g/L HMC |
Component | Value |
---|---|
Voltage (V) | 120 |
Frequency (Hz) | 500 |
pH | 1.2 |
Current density (A/dm2) | 2 |
Oxidation time (min) | 40 |
Depositing temperature | 5 °C |
HA Electrolyte | 15% sulfuric acid |
Element | C | Si | Mn | Cr | Mo | Ni | Nb | Zr | Fe |
---|---|---|---|---|---|---|---|---|---|
Content | 0.28 | <0.1 | 0.18 | 3.03 | 2.94 | 0.55 | 0.14 | 0.012 | Balance |
Element | Content, wt.% | ||
---|---|---|---|
a | b | c | |
O | 44.15 | 44.87 | 54.21 |
Al | 32.08 | 32.16 | 40.21 |
P | 2.03 | 2.39 | - |
Si | 15.96 | 17.85 | - |
S | - | 0.43 | 5.13 |
Mo | - | 0.22 | - |
Others | 4.62 | 2.08 | 0.53 |
Sample | Thickness/μm | Porosity/% |
---|---|---|
MAO | 60 ± 2.52 | 10.221 |
MAO/MoS2 | 60 ± 3.79 | 5.638 |
HA | 30 ± 1.12 | 2.773 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Zhang, W.; Wei, S.; Pan, K.; Wang, X.; Jiang, T.; Wang, X.; Wang, C.; Chen, C.; Mao, F.; et al. Tribological Properties of 7A04 Aluminum Alloy Enhanced by Ceramic Coating. Lubricants 2024, 12, 384. https://doi.org/10.3390/lubricants12110384
Meng X, Zhang W, Wei S, Pan K, Wang X, Jiang T, Wang X, Wang C, Chen C, Mao F, et al. Tribological Properties of 7A04 Aluminum Alloy Enhanced by Ceramic Coating. Lubricants. 2024; 12(11):384. https://doi.org/10.3390/lubricants12110384
Chicago/Turabian StyleMeng, Xiaobo, Wei Zhang, Shizhong Wei, Kunming Pan, Xiaodong Wang, Tao Jiang, Xiran Wang, Changji Wang, Chong Chen, Feng Mao, and et al. 2024. "Tribological Properties of 7A04 Aluminum Alloy Enhanced by Ceramic Coating" Lubricants 12, no. 11: 384. https://doi.org/10.3390/lubricants12110384
APA StyleMeng, X., Zhang, W., Wei, S., Pan, K., Wang, X., Jiang, T., Wang, X., Wang, C., Chen, C., Mao, F., Qiao, Z., Xue, J., & Zhang, C. (2024). Tribological Properties of 7A04 Aluminum Alloy Enhanced by Ceramic Coating. Lubricants, 12(11), 384. https://doi.org/10.3390/lubricants12110384