Effects of Titanate on Brake Wear Particle Emission Using a Brake Material Friction Test Dynamometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brake Material Friction Test Dynamometer; The 1/7-Scale Inertia Dynamometer
2.2. Friction-Test Conditions
2.3. Brake Disc and Friction Materials
Materials | Brake 1 | Brake 2 | Brake 3 | Brake 4 | Brake 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Selections | ||||||||||
Pad type | NAO | NAO | LS | LS | LS | |||||
Titanate | none | with | none | with | with | |||||
Tin sulfide | --- | --- | with | with | none | |||||
volume or mass percentages | [vol%] | [wt%] | [vol%] | [wt%] | [vol%] | [wt%] | [vol%] | [wt%] | [vol%] | [wt%] |
Titanate | 15 | 19 | 0 | 0 | 14 | 14 | 23 | 25 | ||
Steel fiber | 7 | 16 | 7 | 16 | 7 | 17 | ||||
Tin sulfide | 9 | 14 | 9 | 14 | 0 | 0 | ||||
Di-antimony Tri-sulfide | 1 | 2 | 1 | 2 | ||||||
Graphite | 2 | 1 | 2 | 2 | 9 | 6 | 9 | 6 | 9 | 6 |
Aramid pulp | 5 | 2 | 5 | 3 | 3 | 1 | 3 | 1 | 3 | 1 |
Phenolic resin | 20 | 9 | 20 | 9 | 24 | 9 | 24 | 9 | 24 | 10 |
Cashew particles | 15 | 5 | 15 | 5 | ||||||
Alumina | 1 | 1 | 1 | 1 | 1 | 1 | ||||
Zirconium silicate | 5 | 8 | 5 | 9 | 5 | 6 | 5 | 7 | 5 | 7 |
Magnetite | 5 | 9 | 5 | 9 | ||||||
Mica | 5 | 5 | 5 | 5 | 21 | 18 | 14 | 12 | 14 | 13 |
Barium sulfate | 35 | 52 | 20 | 31 | 21 | 28 | 14 | 19 | 14 | 20 |
Rock wool | 5 | 5 | 5 | 5 | ||||||
Calcium hydroxide | 2 | 2 | 2 | 2 |
2.4. Brake-Wear-Particle Measurement Instruments
3. Results
3.1. Friction Surface Conditions
3.2. Brake-Wear-Particle Mass Amounts and Number Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Hypothetical Overall View of the Role of Titanate to Phenolic Resin on the Substrate of Brake-Friction Products
Appendix B. Friction Behavior
Appendix C. Rust Resistance of Discs After Friction
Appendix D. Effect on Stiction of Tin-Sulfide Substitution into Titanate
References
- Chan, D.; Stachowiak, G.W. Review of automotive brake friction materials. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2004, 218, 953–966. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A Review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [PubMed]
- Kukutschová, J.; Filip, P. Chapter 6—Review of brake-wear emissions: A review of brake emission measurement studies: Identification of gaps and future needs. In Non-Exhaust Emissions; Amato, F., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 123–146. [Google Scholar] [CrossRef]
- Verma, P.C.; Menapace, L.; Bonfanti, A.; Ciudin, R.; Gialanella, S.; Straffelini, G. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear 2015, 322–323, 251–258. [Google Scholar] [CrossRef]
- Yun, R.; Filip, P.; Lu, Y. Performance and evaluation of eco-friendly brake friction materials. Tribol. Int. 2010, 43, 2010–2019. [Google Scholar] [CrossRef]
- Davin, E.A.T.; Cristol, A.-L.; Beaurain, A.; Dufrénoy, P.; Zaquen, N. Differences in wear and material integrity of NAO and low-steel brake pads under severe conditions. Materials 2021, 14, 5531. [Google Scholar] [CrossRef]
- Österle, W.; Dmitriev, A.I. The Role of solid lubricants for brake friction materials. Lubricants 2016, 4, 5. [Google Scholar] [CrossRef]
- Dante, R.C. Metal Sulfides. In Handbook of Friction Materials and Their Applications; Elsevier: Amsterdam, The Netherlands, 2016; pp. 79–91. [Google Scholar] [CrossRef]
- Kimoto, K. Current trends and development of phenolic resins used for friction materials. J. Netw. Poly. Jpn. 2014, 35, 211–217, (In Japanese with English Figures and Tables). [Google Scholar] [CrossRef]
- Singh, T. Comparative performance of barium sulphate and cement by-pass dust on tribological properties of automotive brake friction composites. Alex. Eng. J. 2023, 72, 339–349. [Google Scholar] [CrossRef]
- Handa, Y.; Kato, T. Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads. Tribol. Trans. 1996, 39, 346–353. [Google Scholar] [CrossRef]
- Masotti, D.; Ferreira, N.; Neis, P.; Menetrier, A.; Matozo, L.; Varante, P. Evaluation of Creep Groan Phenomena of Brake Pad Materials Using Different Abrasive Particles; SAE Technical Paper 2014-01-2518; SAE International: Pittsburgh, PA, USA, 2014. [Google Scholar] [CrossRef]
- Masotti, D.; Gomes, T.R.; Ordoñez, M.F.C.; Al-Qureshi, H.A.; Farias, M.C.M. Effect of Abrasives’ Characteristics on Brake Squeal Noise Generation. Wear 2023, 518–519, 204618. [Google Scholar] [CrossRef]
- Kato, T.; Magario, A. The Wear of Aramid Fiber Reinforced Brake Pads: The Role of Aramid Fibers. Tribol. Trans. 1994, 37, 559–565. [Google Scholar] [CrossRef]
- Aranganathan, N.; Mahale, V.; Bijwe, U. Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests. Wear 2016, 354–355, 69–77. [Google Scholar] [CrossRef]
- Melcher, B.; Faullant, P.A. Comprehensive Study of Chemical and Physical Properties of Metal Sulfides; SAE Technical Paper 2000-01-2757; SAE International: Pittsburgh, PA, USA, 2000. [Google Scholar] [CrossRef]
- Fan, X.; Li, H.; Yu, Q.; Xu, J.; Li, M. Assessment of sustainable supply capability of chinese tin resources based on the Entropy Weight-TOPSIS Model. Sustainability 2023, 15, 13076. [Google Scholar] [CrossRef]
- Min, H.C.; Ju, J.; Kim, S.J.; Jang, H. Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear 2006, 260, 855–860. [Google Scholar] [CrossRef]
- Daimon, E.; Inada, K.; Yamamoto, Y.; O’Doherty, J. Chemical Reaction Between Titanate Compounds and Phenolic Resins; SAE Technical Paper 2011-01-2366; SAE International: Pittsburgh, PA, USA, 2011. [Google Scholar] [CrossRef]
- Daimon, E.; Inada, K.; Nomoto, T.; Otsuka, K.; Kitada, K.; O’Doherty, J. Chemical Effects of Titanate Compounds on the Thermal Reactions of Phenolic Resins in Friction Materials—Part 2; SAE Technical Paper 2012-01-1790; SAE International: Pittsburgh, PA, USA, 2012. [Google Scholar] [CrossRef]
- Daimon, E.; Nomoto, T.; Inada, K.; Ogawa, H.; Kitada, K.; O’Doherty, J. Chemical Effects of Titanate Compounds on the Thermal Reactions of Phenolic Resins in Friction Materials—Part 3; SAE Technical Paper 2013-01-2025; SAE International: Pittsburgh, PA, USA, 2013. [Google Scholar] [CrossRef]
- Inada, K.; Aki, M.; Yamamoto, Y. Relationship Between Powder Properties of Titanate Compounds and Brake Performance; SAE Technical Paper 2005-01-3925; SAE International: Pittsburgh, PA, USA, 2005. [Google Scholar] [CrossRef]
- Cho, K.H.; Cho, M.H.; Kim, S.J.; Jang, H. Tribological properties of potassium titanate in the brake friction material; morphological effects. Tribol. Lett. 2008, 32, 59–66. [Google Scholar] [CrossRef]
- Kim, S.J.; Cho, M.H.; Lim, D.-S.; Jang, H. Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear 2001, 251, 1484–1491. [Google Scholar] [CrossRef]
- Song, W.; Gweon, J.; Park, J.S.; Kim, J.; Kim, J.; Jang, H. Role of contact plateaus on velocity-dependent friction of brake friction composite with steel fibers. Tribol. Int. 2022, 171, 107568. [Google Scholar] [CrossRef]
- Joo, B.S.; Gweon, J.; Park, J.; Song, W.; Jang, H. The effect of the mechanical property and size of the surface contacts of the brake lining on friction instability. Tribol. Int. 2021, 153, 106583. [Google Scholar] [CrossRef]
- Cho, M.H.; Cho, K.H.; Kim, S.J.; Kim, D.H.; Jang, H. The Role of transfer layers on friction characteristics in the sliding interface between friction materials against gray iron brake disks. Tribol. Lett. 2005, 20, 101–108. [Google Scholar] [CrossRef]
- Jara, D.C.; Jang, H. Synergistic effects of the ingredients of brake friction materials on friction and wear: A case study on phenolic resin and potassium titanate. Wear 2019, 430–431, 222–232. [Google Scholar] [CrossRef]
- Regulation (EU) 2024/1257 of the European Parliament and of the Council. Document 32024R1257. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202401257 (accessed on 30 August 2024).
- Hagino, H. brake wear and airborne particle mass emissions from passenger car brakes in dynamometer experiments based on the worldwide harmonized light-duty vehicle test procedure brake cycle. Lubricants 2024, 12, 206. [Google Scholar] [CrossRef]
- Gramstat, S.; Mertens, T.; Waninger, R.; Lugovyy, D. Impacts on Brake Particle Emission Testing. Atmosphere 2020, 11, 1132. [Google Scholar] [CrossRef]
- Hagino, H.; Iwata, A.; Okuda, T. Iron Oxide and Hydroxide Speciation in Emissions of Brake Wear Particles from Different Friction Materials Using an X-ray Absorption Fine Structure. Atmosphere 2024, 15, 49. [Google Scholar] [CrossRef]
- ECE/TRANS/180/Add.24. UN Global Technical Regulation No. 24 Laboratory Measurement of Brake Emissions for Light-Duty Vehicles. Update on 17 July 2023. Available online: https://unece.org/sites/default/files/2023-07/ECE-TRANS-180-Add.24.docx (accessed on 30 August 2024).
- Grigoratos, T.; Mamakos, A.; Vedula, R.; Arndt, M.; Lugovyy, D.; Hafenmayer, C.; Moisio, M.; Agudelo, C.; Giechaskiel, B. Characterization of laboratory particulate matter (PM) mass setups for brake emission measurements. Atmosphere 2023, 14, 516. [Google Scholar] [CrossRef]
- Grigoratos, T.; Mamakos, A.; Arndt, M.; Lugovyy, D.; Anderson, R.; Hafenmayer, C.; Moisio, M.; Vanhanen, J.; Frazee, R.; Agudelo, C.; et al. Characterization of particle number setups for measuring brake particle emissions and comparison with exhaust setups. Atmosphere 2023, 14, 103. [Google Scholar] [CrossRef]
- JASO C470; Passenger Car—Measurement Method for Brake Wear Particle Emissions. Society of Automotive Engineers of Japan Inc.: Tokyo, Japan, 2020.
- Alemani, M.; Wahlström, J.; Matějka, V.; Metinöz, I.; Söderberg, A.; Perricone, G.; Olofsson, U. Scaling effects of measuring disc brake airborne particulate matter emissions—A comparison of a pin-on-disc tribometer and an inertia dynamometer bench under dragging conditions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 232, 1538–1547. [Google Scholar] [CrossRef]
- Federici, M.; Alemani, M.; Menapace, C.; Gialanella, S.; Perricone, G.; Straffelini, G. A critical comparison of dynamometer data with pin-on-disc data for the same two friction material pairs—A case study. Wear 2019, 424–425, 40–47. [Google Scholar] [CrossRef]
- Wahlström, J.; Lyu, Y.; Matjeka, V.; Söderberg, A. A pin-on-disc tribometer study of disc brake contact pairs with respect to wear and airborne particle emissions. Wear 2017, 384, 124–130. [Google Scholar] [CrossRef]
- Wahlström, J.; Söderberg, A.; Olander, L.; Olofsson, U.; Jansson, A. Airborne wear particles from passenger car disc brakes: A comparison of measurements from field tests, a disc brake assembly test stand, and a pin-on-disc machine. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 224, 179–188. [Google Scholar] [CrossRef]
- Leonardi, M.; Alemani, M.; Straffelini, G.; Gialanella, S. A pin-on-disc study on the dry sliding behavior of a Cu-free friction material containing different types of natural graphite. Wear 2020, 442–443, 203157. [Google Scholar] [CrossRef]
- Nosko, O.; Olofsson, U. Quantification of ultrafine airborne particulate matter generated by the wear of car brake materials. Wear 2017, 374–375, 92–96. [Google Scholar] [CrossRef]
- Lyu, Y.; Leonardi, M.; Wahlström, J.; Gialanella, S.; Olofsson, U. Friction, wear and airborne particle emission from Cu-free brake materials. Tribol. Int. 2020, 141, 105959. [Google Scholar] [CrossRef]
- Kamifuku, A.; Inada, K.; Downey, M.; Yamamoto, Y. The Brake Abrasion Properties in Two Kinds of Platelet Titanate Compound Formulations, and the Swift Brake Property Evaluation by Using the Thrust Test Method; SAE Technical Paper 2007-01-3950; SAE International: Pittsburgh, PA, USA, 2007. [Google Scholar] [CrossRef]
- Kamada, S.; Inada, K.; Downey, M.; Yamamoto, Y. An Evaluation Method of Brake Pads for New Titanates; SAE Technical Paper 2009-01-3013; SAE International: Pittsburgh, PA, USA, 2009. [Google Scholar] [CrossRef]
- Marin, E.; Daimon, E.; Boschetto, F.; Rondinella, A.; Inada, K.; Zhu, W.; Pezzotti, G. Diagnostic spectroscopic tools for worn brake pad materials: A case study. Wear 2019, 432–433, 202969. [Google Scholar] [CrossRef]
- California State Senate Bill SB346; Hazardous Materials: Motor Vehicle Brake Friction Material. 2010. Available online: https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=200920100SB346 (accessed on 30 August 2024).
- Washington State Senate Bill SB6557; An Act Relating to Limiting the Use of Certain Substances in Brake Friction Materials. 2010. Available online: https://lawfilesext.leg.wa.gov/biennium/2009-10/Htm/Bill%20Reports/House/6557-S%20HBR%20ENVH%2010.htm (accessed on 30 August 2024).
- Eriksson, M.; Bergman, F.; Jacobson, S. On the nature of tribological contact in automotive brakes. Wear 2002, 252, 26–36. [Google Scholar] [CrossRef]
- Rhee, S.; Sharma, D.; Singh, S.; Rathee, A. An Investigation of the Role of Wear and Friction Film Influencing the Friction Coefficient of Brakes: Mechanism of Brake Fade; SAE Technical Paper 2020-01-1630; SAE International: Pittsburgh, PA, USA, 2020. [Google Scholar] [CrossRef]
- Seo, H.; Lee, D.G.; Park, J.; Song, W.; Lee, J.J.; Sohn, S.S.; Jang, H. Quench hardening effect of gray iron brake discs on particulate matter emission. Wear 2023, 523, 204781. [Google Scholar] [CrossRef]
- Niemann, H.; Winner, H.; Asbach, C.; Kaminski, H.; Frentz, G.; Milczarek, R. Influence of disc temperature on ultrafine, fine, and coarse particle emissions of passenger car disc brakes with organic and inorganic pad binder materials. Atmosphere 2020, 11, 1060. [Google Scholar] [CrossRef]
- Noh, H.J.; Jang, H. Friction instability induced by iron and iron oxides on friction material surface. Wear 2018, 400, 93–99. [Google Scholar] [CrossRef]
- Motta, M.; Fedrizzi, L.; Andreatta, F. Corrosion stiction in automotive braking systems. Materials 2023, 16, 3710. [Google Scholar] [CrossRef]
- Gweon, J.; Shin, S.; Jang, H.; Lee, W.; Kim, D.; Lee, K. The Factors Governing Corrosion Stiction of Brake Friction Materials to a Gray Cast Iron Disc; SAE Technical Paper 2018-01-1899; SAE International: Pittsburgh, PA, USA, 2018; Available online: https://saemobilus.sae.org/content/2018-01-1899/ (accessed on 30 August 2024).
- Gweon, J.; Park, J.; Lee, W.K.; Kim, D.Y.; Jang, H. Root cause study of corrosion stiction by brake pads on the grey iron disc. Eng. Fail. Anal. 2021, 128, 105583. [Google Scholar] [CrossRef]
- Park, C.W.; Shin, M.W.; Jang, H. Friction-induced stick-slip intensified by corrosion of gray iron brake disc. Wear 2014, 309, 89–95. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daimon, E.; Ito, Y. Effects of Titanate on Brake Wear Particle Emission Using a Brake Material Friction Test Dynamometer. Lubricants 2024, 12, 387. https://doi.org/10.3390/lubricants12110387
Daimon E, Ito Y. Effects of Titanate on Brake Wear Particle Emission Using a Brake Material Friction Test Dynamometer. Lubricants. 2024; 12(11):387. https://doi.org/10.3390/lubricants12110387
Chicago/Turabian StyleDaimon, Emiko, and Yasuhito Ito. 2024. "Effects of Titanate on Brake Wear Particle Emission Using a Brake Material Friction Test Dynamometer" Lubricants 12, no. 11: 387. https://doi.org/10.3390/lubricants12110387
APA StyleDaimon, E., & Ito, Y. (2024). Effects of Titanate on Brake Wear Particle Emission Using a Brake Material Friction Test Dynamometer. Lubricants, 12(11), 387. https://doi.org/10.3390/lubricants12110387