Mechanical and Tribological Properties of (AlCrNbSiTiMo)N High-Entropy Alloy Films Prepared Using Single Multiple-Element Powder Hot-Pressed Sintered Target and Their Practical Application in Nickel-Based Alloy Milling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Target Materials and Films
2.2. Characterization, Mechanical Properties, and Adhesion Strength
2.3. Tribological Characteristics
2.4. Milling Performance
3. Results and Discussion
3.1. Chemical Composition
3.2. XRD and XPS Analyses
3.3. Cross-Sectional and Surface Morphologies
3.4. Mechanical Properties
3.5. Tribological Performance
3.5.1. Friction Performance
3.5.2. Wear Properties
3.5.3. Wear Mechanism
3.6. Machining Performance
4. Conclusions
- (1)
- As the N2 flow rate increased, the RN43 film reached a nitrogen saturation condition of 54.6 at.%. The high nitrogen content resulted in the formation of strong nitride bonds, giving the film excellent thermal stability. After annealing, all the films exhibited a denser structure.
- (2)
- The hardness of the films initially increased with an increasing nitrogen content due to the solid-solution strengthening effect and the subsequent formation of Me-N bonds. The hardness of the as-deposited RN43 film reached 33.0 GPa. For the annealed films, the film structures were denser, and the bonding strength between the film elements and nitrogen was enhanced. Consequently, the hardness of all the films increased. The HRN43 film showed the highest hardness (36.0 GPa).
- (3)
- The HRN43 film had the highest hardness, H/E ratio, adhesion strength, and amount of MoO3 solid lubricant. It thus showed the best tribological properties. Compared with the bare HWC substrate, the worn depth and worn rate of the HRN43 film were reduced by 60.0% and 57.9%, respectively.
- (4)
- Compared with the bare milling tool, the flank wear and notch wear of the RN43-coated tool were reduced by 63.0% and 47.0%, respectively. Therefore, the RN43 film displays to be an appropriate film material for processing Inconel 718 alloy. In particular, the RN43 film provides an excellent machining performance and significantly extends the tool life, resulting in lower tool replacement costs during Inconel 718 processing in industry.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cantor, B.; Kim, K.B.; Warren, P.J. Novel multicomponent amorphous alloys. Mater. Sci. Forum. 2002, 386–388, 27–32. [Google Scholar]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Huang, P.K.; Yeh, J.W. Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings. Thin Solid Films 2009, 518, 180–184. [Google Scholar] [CrossRef]
- Lai, C.H.; Cheng, K.H.; Lin, S.J.; Yeh, J.W. Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings. Surf. Coat. Technol. 2008, 202, 3732–3738. [Google Scholar] [CrossRef]
- Lo, W.L.; Hsu, S.Y.; Lin, Y.C.; Tsai, S.Y.; Lai, Y.T.; Duh, J.G. Improvement of high entropy alloy nitride coatings (AlCrNbSiTiMo)N on mechanical and high temperature tribological properties by tuning substrate bias. Surf. Coat. Technol. 2020, 401, 126247. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, S.; Chen, Y.; Wu, S.; Xie, W.; Yan, W.; Wang, S.; Liao, B.; Zhang, S. Super-hard and anti-corrosion (AlCrMoSiTi)Nx high entropy nitride coatings by multi-arc cathodic vacuum magnetic filtration deposition. Vacuum 2022, 195, 110685. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, K.; Zheng, Y.; Zhou, H.; Wan, Z. Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV)Nx films by reactive magnetron sputtering. Mater. Chem. Phys. 2020, 239, 121991. [Google Scholar] [CrossRef]
- Chang, H.W.; Huang, P.K.; Yeh, J.W.; Davison, A.; Tsau, C.H.; Yang, C.C. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings. Surf. Coat. Technol. 2008, 202, 3360–3366. [Google Scholar] [CrossRef]
- Lin, Y.C.; Hsu, S.Y.; Song, R.W.; Lo, W.L.; Lai, Y.T.; Tsai, S.Y.; Duh, J.G. Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)N coatings via tuning substrate temperature and bias for anti-wear applications. Surf. Coat. Technol. 2020, 403, 126417. [Google Scholar] [CrossRef]
- Chang, C.H.; Yang, C.B.; Sung, C.C.; Hsu, C.Y. Structure and tribological behavior of (AlCrNbSiTiV)N film deposited using direct current magnetron sputtering and high power impulse magnetron sputtering. Thin Solid Films 2018, 668, 63–68. [Google Scholar] [CrossRef]
- Shen, W.; Tsai, M.; Tsai, K.; Juan, C.; Tsai, C.; Yeh, J.; Chang, Y. Superior oxidation resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride. J. Electrochem. Soc. 2013, 160, C531. [Google Scholar] [CrossRef]
- Wang, D.Y.; Chang, C.L.; Ho, W.Y. Oxidation behavior of diamond-like carbon films. Surf. Coat. Technol. 1999, 120, 138–144. [Google Scholar] [CrossRef]
- El-Wardany, T.I.; Mohammed, E.; Elbestawi, M.A. Cutting temperature of ceramic tools in high speed machining of difficult-to-cut materials. Int. J. Mach. Tools Manuf. 1996, 36, 611–634. [Google Scholar] [CrossRef]
- Döleker, K.M.; Özgürlük, Y.; Gokcekaya, O.; Günen, A.; Erdoğan, A. High-temperature corrosion and oxidation properties of borided CoCrFeNiAl0.5Nb0.5 HEA. Surf. Coat. Technol. 2023, 470, 129856. [Google Scholar] [CrossRef]
- Kuzminova, Y.O.; Firsov, D.G.; Shibalova, A.A.; Evlashin, S.A.; Shishkovsky, I.V.; Dautov, S.S. The oxidation behavior of the CrFeCoNiAlx (x = 0, 1.0, and 5.0 wt%) high-entropy alloy synthesized with Al elemental powder via powder bed fusion technique at high temperatures. Micron 2023, 166, 103399. [Google Scholar] [CrossRef]
- Hong, Y.; Kivy, M.B.; Zaeem, M.A. Competition between formation of Al2O3 and Cr2O3 in oxidation of Al0.3CoCrCuFeNi high entropy alloy: A first-principles study. Scr. Mater. 2019, 168, 139–143. [Google Scholar] [CrossRef]
- Dong, J.; Long, X.J.; Zhou, L.J.; Deng, H.; Zhang, H.C.; Qiu, W.B.; Yin, M.; Yin, G.F.; Chen, L.Q. Effect of Ti addition on high-temperature properties of AlCoCrFeNi2.1 coating prepared on Ti-6Al-4V alloy. Corros. Sci. 2023, 217, 111105. [Google Scholar] [CrossRef]
- Wang, M.; Zhan, L.J.; Peng, J. Nb micro-alloying on enhancing yield strength and hindering intermediate temperature decomposition of a carbon-doped high-entropy alloy. J. Alloys Compd. 2023, 940, 168896. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, K.; Ma, Q.; Song, C.; Xiao, G.; Zhang, H.; Lv, Y.; Guo, N.; Li, Z. Synergistic effects of Mo and in-situ TiC on the microstructure and wear resistance of AlCoCrFeNi high entropy alloy fabricated by laser cladding. Tribol. Int. 2023, 188, 108827. [Google Scholar] [CrossRef]
- Pei, X.; Du, Y.; Li, T.; Wang, H.; Hu, M.; Wang, H. A combinatorial evaluation of TiZrV0.5Nb0.5Six refractory high entropy alloys: Microstructure, mechanical properties, wear and oxidation behaviors. Mater. Charact. 2023, 201, 112956. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, K.; Yao, C.; Li, Z. Effect of MoO3 on the microstructure and tribological properties of laser-clad Ni60/nanoCu/h-BN/MoO3 composite coatings over wide temperature range. Surf. Coat. Technol. 2020, 387, 125477. [Google Scholar] [CrossRef]
- Zin, V.; Montagner, F.; Miorin, E.; Mortalò, C.; Tinazzi, R.; Bolelli, G.; Lusvarghi, L.; Togni, A.; Frabboni, S.; Gazzadi, G.; et al. Effect of Mo content on the microstructure and mechanical properties of CoCrFeNiMox HEA coatings deposited by high power impulse magnetron sputtering. Surf. Coat. Technol. 2024, 476, 130244. [Google Scholar] [CrossRef]
- Kao, W.H.; Su, Y.L.; Horng, J.H.; Wu, W.C. Mechanical, tribological and anti-corrosion properties of AlCrNbSiTi high entropy coatings with various nitrogen fluxes and application to nickel-based alloy milling. Mater. Chem. Phys. 2022, 282, 125999. [Google Scholar] [CrossRef]
- Zhang, X.; Pelenovich, V.; Zeng, X.; Wan, Q.; Liu, J.; Pogrebnjak, A.; Guo, Y.; Liu, Y.; Lei, Y.; Yang, B. Unravel hardening mechanism of AlCrNbSiTi high-entropy alloy coatings. J. Alloys Compd. 2023, 965, 171222. [Google Scholar] [CrossRef]
- Shen, W.J.; Tsai, M.H.; Chang, Y.S.; Yeh, J.W. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings. Thin Solid Films 2012, 520, 6183–6188. [Google Scholar] [CrossRef]
- Kao, W.H.; Su, Y.L.; Horng, J.H.; Cheng, Y.T. Mechanical behavior, tribological properties, and thermal stability of (AlCrNbSiTiVZr)N high entropy alloy nitride coatings and their application to Inconel 718 milling. Mater. Chem. Phys. 2024, 314, 128816. [Google Scholar] [CrossRef]
- Peng, C.; Zhong, L.; Gao, L.; Li, L.; Nie, L.; Wu, A.; Huang, R.; Tian, W.; Yin, W.; Wang, H.; et al. Implementation of near-infrared spectroscopy and convolutional neural networks for predicting particle size distribution in fluidized bed granulation. Int. J. Pharm. 2024, 655, 124001. [Google Scholar] [CrossRef]
- Ren, B.; Yan, S.Q.; Zhao, R.F.; Liu, Z.X. Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering. Surf. Coat. Technol. 2013, 235, 764–772. [Google Scholar] [CrossRef]
- Liang, S.C.; Tsai, D.C.; Chang, Z.C.; Sung, H.S.; Lin, Y.C.; Yeh, Y.J.; Deng, M.J.; Shieu, F.S. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering. Appl. Surf. Sci. 2011, 258, 399–403. [Google Scholar] [CrossRef]
- ASTM G99-17; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM: West Conshohocken, PA, USA, 2023.
- Cui, P.; Li, W.; Liu, P.; Zhang, K.; Ma, F.; Chen, X.; Feng, R.; Liaw, P.K. Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films. J. Alloys Compd. 2020, 834, 155063. [Google Scholar] [CrossRef]
- Farhadizadeh, A.; Vlček, J.; Houška, J.; Haviar, S.; Čerstvý, R.; Červená, M.; Zeman, P.; Matas, M. Effect of nitrogen content on high-temperature stability of hard and optically transparent amorphous Hf-Y-Si-BCN coatings. Ceram. Int. 2023, 49, 6086–6093. [Google Scholar] [CrossRef]
- Chang, S.Y.; Lin, S.Y.; Huang, Y.C.; Wu, C.L. Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings. Surf. Coat. Technol. 2010, 204, 3307–3314. [Google Scholar] [CrossRef]
- Hsueh, H.T.; Shen, W.J.; Tsai, M.H.; Yeh, J.W. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx. Surf. Coat. Technol. 2012, 206, 4106–4112. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, M.; Xu, J.; Xie, Z.H.; Munroe, P. Effects of nitrogen concentration on the microstructure and mechanical properties of nanocrystalline (TiZrNbTaMo) N high-entropy nitride coatings: Experimental investigations and first-principles calculations. Vacuum 2024, 219, 112715. [Google Scholar] [CrossRef]
- Peng, X.; Chen, L. Effect of high entropy alloys TiVCrZrHf barrier layer on microstructure and texture of Cu thin films. Mater. Lett. 2018, 230, 5–8. [Google Scholar] [CrossRef]
- You, D.; Jiang, Y.; Li, W.; Zhao, Y.; Wan, L.; Tan, M. Annealing-induced defects and optical degradation in sputter-deposited silicon nitride: Implications for photonic applications. Ceram. Int. 2024, 50, 22553–22564. [Google Scholar] [CrossRef]
- Tsai, D.C.; Chang, Z.C.; Kuo, B.H.; Shiao, M.H.; Chang, S.Y.; Shieu, F.S. Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering. Appl. Surf. Sci. 2013, 282, 789–797. [Google Scholar] [CrossRef]
- Ougier, M.; Michau, A.; Lomello, F.; Schuster, F.; Maskrot, H.; Schlegel, M.L. High-temperature oxidation behavior of HiPIMS as-deposited Cr-Al-C and annealed Cr2AlC coatings on Zr-based alloy. J. Nucl. Mater. 2020, 528, 151855. [Google Scholar] [CrossRef]
- Liang, S.C.; Chang, Z.C.; Tsai, D.C.; Lin, Y.C.; Sung, H.S.; Deng, M.J.; Shieu, F.S. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings. Appl. Surf. Sci. 2011, 257, 7709–7713. [Google Scholar] [CrossRef]
- Cheng, K.H.; Lai, C.H.; Lin, S.J.; Yeh, J.W. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films 2011, 519, 3185–3190. [Google Scholar] [CrossRef]
- Tien, S.K.; Lin, C.H.; Tsai, Y.Z.; Duh, J.G. Effect of nitrogen flow on the properties of quaternary CrAlSiN coatings at elevated temperatures. Surf. Coat. Technol. 2007, 202, 735–739. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Wei, Y.; Wu, Q.; Zhang, F.; Xu, Q. Effect of film growth thickness on the refractive index and crystallization of HfO2 film. Ceram. Int. 2021, 47, 33751–33757. [Google Scholar] [CrossRef]
- Ma, D.L.; Deng, Q.Y.; Liu, H.Y.; Li, Y.T.; Leng, Y.X. Microstructure and properties of Ti2AlN thin film synthesized by vacuum annealing of high power pulsed magnetron sputtering deposited Ti/AlN multilayers. Surf. Coat. Technol. 2021, 425, 127749. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, H.; Zhao, R.; Yu, G.; Chen, J.; Yin, F. Microstructure, mechanical and corrosion performance of magnetron sputtered (Al0.5CoCrFeNi)Nx high-entropy alloy nitride films. J. Alloys Compd. 2023, 968, 172158. [Google Scholar] [CrossRef]
- Ren, B.; Shen, Z.; Liu, Z. Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering. J. Alloys Compd. 2013, 560, 171–176. [Google Scholar] [CrossRef]
- Othman, M.; Bushroa, A.R. Evaluation techniques and improvements of adhesion strength for TiN coating in tool applications: A review. J. Adhes. Sci. Technol. 2015, 29, 569–591. [Google Scholar] [CrossRef]
- Abuzaid, W.Z.; Sangid, M.D.; Carroll, J.D.; Sehitoglu, H.; Lambros, J. Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J. Mech. Phys. Solid. 2012, 60, 1201–1220. [Google Scholar] [CrossRef]
- Pang, X.; Yang, H.; Liu, X.; Gao, K.; Wang, Y.; Volinsky, A.A.; Levin, A.A. Annealing effects on microstructure and mechanical properties of sputtered multilayer Cr(1 − x)AlxN films. Thin Solid Films 2011, 519, 5831–5837. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimized tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Chang, C.L.; Lee, J.W.; Tseng, M.D. Microstructure, corrosion and tribological behaviors of TiAlSiN coatings deposited by cathodic arc plasma deposition. Thin Solid Films 2009, 517, 5231–5236. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, B.; Zhang, E.G.; Peng, Z.Y.; Chen, Q.; Liang, D.D. Improving the mechanical and tribological properties of TiAlSiN coatings by annealing. Vacuum 2023, 214, 112249. [Google Scholar] [CrossRef]
- Jamali, A.; Mirsalehi, S.E. Production of AA7075/ZrO2 nanocomposite using friction stir processing: Metallurgical structure, mechanical properties and wear behavior. CIRP J. Manuf. Sci. Technol. 2022, 37, 55–69. [Google Scholar] [CrossRef]
- Czan, A.; Sajgalik, M.; Holubjak, J.; Zauskova, L.; Czanova, T.; Martikan, P. Identification of temperatures in cutting zone when dry machining of nickel alloy Inconel 718. Procedia Manuf. 2017, 14, 66–75. [Google Scholar] [CrossRef]
Variable Parameters | Constant Parameters | |||
---|---|---|---|---|
Film Name | Nitrogen Flux (sccm) | Interlayer (Cr) | Transitional Layer (CrN) | Main Film (AlCrNbSiTiMo) |
RN0 | 0 | Deposition time: 20 min | Deposition time: 15 min | Deposition time: 80 min |
RN33 | 10 | Cr Target set current: 1.5 A | Cr Target current: 1.5 A | AlCrNbSiTi target set current: 1.5 A |
RN43 | 15 | Argon flow rate: 20 sccm | Nitrogen flux: 8 sccm | Mo target set current: 1.5 A |
RN50 | 20 | Substrate bias: −150 V | Argon flow rate: 20 sccm | Argon flow rate: 20 sccm |
RN56 | 25 | Substrate bias: −150 V | Substrate bias: −50 V |
Film | N | O | Al | Si | Ti | Cr | Nb | Mo |
---|---|---|---|---|---|---|---|---|
RN0 | 0 | 9.5 ± 0.3 | 20.4 ± 0.8 | 7.0 ± 0.3 | 15.3 ± 0.5 | 19.8 ± 0.3 | 6.5 ± 0.5 | 21.6 ± 1.2 |
RN33 | 42.8 ± 0.8 | 5.3 ± 0.1 | 12.0 ± 0.5 | 3.3 ± 0.1 | 8.3 ± 0.2 | 10.4 ± 0.3 | 3.4 ± 0.3 | 14.5 ± 0.8 |
RN43 | 54.6 ± 1.0 | 5.2 ± 0.4 | 9.6 ± 0.6 | 2.6 ± 0.1 | 5.9 ± 0.3 | 7.3 ± 0.7 | 2.3 ± 0.2 | 12.5 ± 0.6 |
RN50 | 57.3 ± 1.2 | 5.5 ± 0.1 | 8.5 ± 0.7 | 2.4 ± 0.1 | 5.0 ± 0.4 | 6.1 ± 0.5 | 2.1 ± 0.1 | 13.1 ± 0.5 |
RN56 | 57.9 ± 1.5 | 5.8 ± 0.1 | 8.6 ± 0.8 | 2.5 ± 0.1 | 5.0 ± 0.2 | 5.5 ± 0.4 | 2.1 ± 0.1 | 12.6 ± 0.7 |
HRN0 | 0 | 54.3 ± 0.2 | 20.3 ± 0.1 | 3.2 ± 0.2 | 4.2 ± 0.2 | 6.5 ± 0.3 | 2.2 ± 0.2 | 9.3 ± 0.2 |
HRN33 | 37.5 ± 0.9 | 12.6 ± 0.5 | 11.5 ± 0.2 | 3.3 ± 0.1 | 8.0 ± 0.2 | 9.8 ± 0.8 | 3.3 ± 0.1 | 14.0 ± 0.2 |
HRN43 | 50.3 ± 0.6 | 8.9 ± 0.6 | 9.8 ± 0.2 | 2.6 ± 0.1 | 5.8 ± 0.6 | 7.2 ± 0.5 | 2.4 ± 0.2 | 13.1 ± 0.2 |
HRN50 | 54.1 ± 0.4 | 9.0 ± 0.3 | 8.5 ± 0.2 | 2.5 ± 0.1 | 5.0 ± 0.5 | 5.8 ± 0.3 | 2.1 ± 0.1 | 13.0 ± 0.1 |
HRN56 | 55.8 ± 0.5 | 7.3 ± 0.3 | 8.8 ± 0.1 | 2.6 ± 0.2 | 5.2 ± 0.4 | 5.8 ± 0.2 | 2.1 ± 0.2 | 12.6 ± 0.1 |
Film Code | Proportion of Me-Me Bonds (%) | |||||
---|---|---|---|---|---|---|
Al | Si | Ti | Cr | Nb | Mo | |
RN0 | - | 72.7 | 63.1 | 19.3 | - | 61.3 |
RN33 | - | 70.3 | 84.9 | 74.8 | 53.0 | 67.9 |
RN43 | - | 26.4 | 46.0 | 36.8 | 2.8 | - |
RN50 | - | 22.7 | 22.8 | 25.3 | - | - |
RN56 | - | 21.2 | 23.8 | 22.5 | - | - |
HRN0 | - | - | 43.2 | 11.8 | - | 66.5 |
HRN33 | - | 35.1 | 19.2 | 30.7 | 46.0 | 85.4 |
HRN43 | - | - | - | - | - | - |
HRN50 | - | - | - | - | - | - |
HRN56 | - | - | - | - | - | - |
Film Code | Bonding Proportion (%) | ||||||
---|---|---|---|---|---|---|---|
Me-O | Mo-O | ||||||
Al | Si | Ti | Cr | Nb | MoO2 | MoO3 | |
RN0 | 100 | 27.3 | 36.9 | 80.7 | 100 | 38.7 | - |
RN33 | 100 | 8.8 | 15.1 | 25.2 | 47.0 | 32.1 | - |
RN43 | 60.5 | 8.8 | 11.5 | 19.9 | 44.6 | - | 48.2 |
RN50 | 46.1 | 0 | 17.6 | 13.4 | 42.8 | - | 41.0 |
RN56 | 38.7 | 0 | 7.8 | 14.0 | 39.8 | - | 36.9 |
HRN0 | 100 | 100 | 56.8 | 88.2 | 100 | 2.9 | 30.6 |
HRN33 | 100 | 64.9 | 59.7 | 69.3 | 54.0 | - | 14.4 |
HRN43 | 100 | 35.9 | 33.4 | 43.0 | 42.1 | - | 36.1 |
HRN50 | 100 | 35.5 | 29.9 | 26.6 | 30.2 | - | 24.4 |
HRN56 | 100 | 14.6 | 12.4 | 29.4 | 29.2 | - | 25.5 |
Film Code | Proportion of Me-N Bonds (%) | |||||
---|---|---|---|---|---|---|
Al-N | Si-N | Ti-N | Cr-N | Nb-N | Mo-N | |
RN0 | - | - | - | - | - | - |
RN33 | - | 20.9 | - | - | - | - |
RN43 | 39.5 | 64.8 | 42.5 | 43.3 | 52.6 | 51.8 |
RN50 | 53.9 | 77.3 | 59.6 | 61.3 | 57.2 | 59 |
RN56 | 61.3 | 78.8 | 68.4 | 63.5 | 60.2 | 63.1 |
HRN0 | - | - | - | - | - | - |
HRN33 | - | - | 21.1 | - | - | - |
HRN43 | - | 64.1 | 66.6 | 57 | 57.9 | 63.9 |
HRN50 | - | 64.5 | 70.1 | 73.4 | 69.8 | 75.6 |
HRN56 | - | 85.4 | 87.6 | 70.6 | 70.8 | 74.5 |
Film | Hardness (GPa) | Elastic Modulus (GPa) | H/E Ratio | Roughness Ra (nm) | Thickness (μm) | Adhesion Strength Lc (N) |
---|---|---|---|---|---|---|
RN0 | 17.4 ± 1.0 | 622.9 ± 35.3 | 0.028 | 21.2 ± 1.2 | 2.19 | 61.3 |
RN33 | 23.5 ± 2.1 | 602.4 ± 35.0 | 0.039 | 28.5 ± 1.3 | 1.78 | 48.6 |
RN43 | 33.0 ± 2.3 | 496.5 ± 40.3 | 0.066 | 23.0 ± 1.3 | 1.59 | >100 |
RN50 | 28.0 ± 1.1 | 550.2 ± 23.4 | 0.051 | 20.8 ± 2.5 | 1.41 | >100 |
RN56 | 25.5 ± 2.6 | 562.1 ± 47.2 | 0.045 | 19.5 ± 1.1 | 1.28 | >100 |
HRN0 | 20.0 ± 1.1 | 467.9 ± 36.4 | 0.043 | 39.2 ± 4.0 | 2.33 | 39 |
HRN33 | 24.0 ± 1.4 | 711.7 ± 34.9 | 0.034 | 45.3 ± 2.0 | 1.89 | 11.1 |
HRN43 | 36.0 ± 1.6 | 498.9 ± 56.2 | 0.072 | 29.3 ± 1.8 | 1.46 | >100 |
HRN50 | 29.5 ± 1.0 | 714.0 ± 31.3 | 0.041 | 29.6 ± 1.7 | 1.43 | 61.6 |
HRN56 | 28.9 ± 1.6 | 719.6 ± 42.5 | 0.040 | 28.3 ± 1.7 | 1.31 | 47.3 |
Film | COF | Worn Depth (μm) | Worn Rate (10−6 mm3/(N × m)) |
---|---|---|---|
WC | 0.19 | 0.23 ± 0.03 | 0.96 ± 0.25 |
RN0 | 0.21 | 2.20 ± 0.13 | 18.25 ± 1.45 |
RN33 | 0.16 | 2.11 ± 0.06 | 15.77 ± 1.07 |
RN43 | 0.17 | 0.15 ± 0.01 | 0.49 ± 0.05 |
RN50 | 0.15 | 0.20 ± 0.01 | 0.75 ± 0.03 |
RN56 | 0.15 | 0.41 ± 0.03 | 1.45 ± 0.10 |
HWC | 0.28 | 0.25 ± 0.01 | 1.14 ± 0.10 |
HRN0 | 0.19 | 0.22 ± 0.03 | 1.02 ± 0.08 |
HRN33 | 0.16 | 1.93 ± 0.05 | 16.67 ± 0.77 |
HRN43 | 0.15 | 0.10 ± 0.01 | 0.48 ± 0.07 |
HRN50 | 0.15 | 1.75 ± 0.06 | 9.88 ± 0.36 |
HRN56 | 0.13 | 1.19 ± 0.08 | 8.29 ± 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horng, J.-H.; Kao, W.-H.; Lin, W.-C.; Chang, R.-H. Mechanical and Tribological Properties of (AlCrNbSiTiMo)N High-Entropy Alloy Films Prepared Using Single Multiple-Element Powder Hot-Pressed Sintered Target and Their Practical Application in Nickel-Based Alloy Milling. Lubricants 2024, 12, 391. https://doi.org/10.3390/lubricants12110391
Horng J-H, Kao W-H, Lin W-C, Chang R-H. Mechanical and Tribological Properties of (AlCrNbSiTiMo)N High-Entropy Alloy Films Prepared Using Single Multiple-Element Powder Hot-Pressed Sintered Target and Their Practical Application in Nickel-Based Alloy Milling. Lubricants. 2024; 12(11):391. https://doi.org/10.3390/lubricants12110391
Chicago/Turabian StyleHorng, Jeng-Haur, Wen-Hsien Kao, Wei-Chen Lin, and Ren-Hao Chang. 2024. "Mechanical and Tribological Properties of (AlCrNbSiTiMo)N High-Entropy Alloy Films Prepared Using Single Multiple-Element Powder Hot-Pressed Sintered Target and Their Practical Application in Nickel-Based Alloy Milling" Lubricants 12, no. 11: 391. https://doi.org/10.3390/lubricants12110391
APA StyleHorng, J. -H., Kao, W. -H., Lin, W. -C., & Chang, R. -H. (2024). Mechanical and Tribological Properties of (AlCrNbSiTiMo)N High-Entropy Alloy Films Prepared Using Single Multiple-Element Powder Hot-Pressed Sintered Target and Their Practical Application in Nickel-Based Alloy Milling. Lubricants, 12(11), 391. https://doi.org/10.3390/lubricants12110391