Coarse-Grained Molecular Dynamics Simulations of Organic Friction Modifier Adsorption on Rough Surfaces under Shear
Abstract
:1. Introduction
2. Simulation Details
2.1. Simulation Method
2.2. Materials and Coarse-Grained Models
2.3. Determination of Damping Coefficients
2.4. Models and Conditions of CG Shear Simulations
3. Results and Discussion
3.1. Symmetric Models
3.1.1. Adsorption Behavior
3.1.2. Interpretation of Fluctuating OFM Adsorption Behavior
3.2. Asymmetric Models
3.2.1. Adsorption Behavior
3.2.2. Interpretation of OFM Desorption in Shearing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Coarse-Grained Potentials and Validation
Appendix A.1. Liquid–Liquid Potentials
Appendix A.2. Liquid–Solid Potentials
Appendix B. Simulation Setup for Fine-Tuning Damping Coefficients
Appendix B.1. Liquid–Liquid Damping Coefficients
Appendix B.2. Liquid–Solid Damping Coefficients
References
- Holmberg, K.; Erdemir, A. Influence of Tribology on Global Energy Consumption, Costs and Emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Spikes, H. Friction Modifier Additives. Tribol. Lett. 2015, 60, 5. [Google Scholar] [CrossRef]
- McQueen, J.S.; Gao, H.; Black, E.D.; Gangopadhyay, A.K.; Jensen, R.K. Friction and Wear of Tribofilms Formed by Zinc Dialkyl Dithiophosphate Antiwear Additive in Low Viscosity Engine Oils. Tribol. Int. 2005, 38, 289–297. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, Y. Boundary Lubrication by Adsorption Film. Friction 2015, 3, 115–147. [Google Scholar] [CrossRef]
- Vaitkunaite, G.; Espejo, C.; Wang, C.; Thiébaut, B.; Charrin, C.; Neville, A.; Morina, A. MoS2 Tribofilm Distribution from Low Viscosity Lubricants and Its Effect on Friction. Tribol. Int. 2020, 151, 106531. [Google Scholar] [CrossRef]
- Cyriac, F.; Tee, X.Y.; Poornachary, S.K.; Chow, P.S. Influence of Structural Factors on the Tribological Performance of Organic Friction Modifiers. Friction 2021, 9, 380–400. [Google Scholar] [CrossRef]
- Ewen, J.P.; Gattinoni, C.; Morgan, N.; Spikes, H.A.; Dini, D. Nonequilibrium Molecular Dynamics Simulations of Organic Friction Modifiers Adsorbed on Iron Oxide Surfaces. Langmuir 2016, 32, 4450–4463. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Yang, J.; Shen, Y.; Xu, J. Friction Performance of MoDTP and Ester-containing Lubricants between CKS Piston Ring and Cast Iron Cylinder Liner. Lubr. Sci. 2018, 30, 33–43. [Google Scholar] [CrossRef]
- Cyriac, F.; Yi, T.X.; Poornachary, S.K.; Chow, P.S. Boundary Lubrication Performance of Polymeric and Organic Friction Modifiers in the Presence of an Anti-Wear Additive. Tribol. Int. 2022, 165, 107256. [Google Scholar] [CrossRef]
- Tang, Z.; Li, S. A Review of Recent Developments of Friction Modifiers for Liquid Lubricants (2007–Present). Curr. Opin. Solid State Mater. Sci. 2014, 18, 119–139. [Google Scholar] [CrossRef]
- Cañellas, G.; Emeric, A.; Combarros, M.; Navarro, A.; Beltran, L.; Vilaseca, M.; Vives, J. Tribological Performance of Esters, Friction Modifier and Antiwear Additives for Electric Vehicle Applications. Lubricants 2023, 11, 109. [Google Scholar] [CrossRef]
- Shi, J.; Li, H.; Lu, Y.; Sun, L.; Xu, S.; Fan, X. Synergistic Lubrication of Organic Friction Modifiers in Boundary Lubrication Regime by Molecular Dynamics Simulations. Appl. Surf. Sci. 2023, 623, 157087. [Google Scholar] [CrossRef]
- Hou, J.; Tsukamoto, M.; Zhang, H.; Fukuzawa, K.; Itoh, S.; Azuma, N. Characterization of Organic Friction Modifiers Using Lateral Force Microscopy and Eyring Activation Energy Model. Tribol. Int. 2023, 178, 108052. [Google Scholar] [CrossRef]
- Campen, S.; Green, J.H.; Lamb, G.D.; Spikes, H.A. In Situ Study of Model Organic Friction Modifiers Using Liquid Cell AFM: Self-Assembly of Octadecylamine. Tribol. Lett. 2015, 58, 39. [Google Scholar] [CrossRef]
- Campen, S.; Green, J.H.; Lamb, G.D.; Spikes, H.A. In Situ Study of Model Organic Friction Modifiers Using Liquid Cell AFM: Saturated and Mono-Unsaturated Carboxylic Acids. Tribol. Lett. 2015, 57, 18. [Google Scholar] [CrossRef]
- Sahoo, R.R.; Biswas, S.K. Frictional Response of Fatty Acids on Steel. J. Colloid Interf. Sci. 2009, 333, 707–718. [Google Scholar] [CrossRef]
- Hamdan, S.H.; Lee, C.T.; Lee, M.B.; Chong, W.W.F.; Chong, C.T.; Sanip, S.M. Synergistic Nano-Tribological Interaction between Zinc Dialkyldithiophosphate (ZDDP) and Methyl Oleate for Biodiesel-Fueled Engines. Friction 2021, 9, 612–626. [Google Scholar] [CrossRef]
- Zachariah, Z.; Nalam, P.C.; Ravindra, A.; Raju, A.; Mohanlal, A.; Wang, K.; Castillo, R.V.; Espinosa-Marzal, R.M. Correlation Between the Adsorption and the Nanotribological Performance of Fatty Acid-Based Organic Friction Modifiers on Stainless Steel. Tribol. Lett. 2020, 68, 11. [Google Scholar] [CrossRef]
- Gmür, T.A.; Mandal, J.; Cayer-Barrioz, J.; Spencer, N.D. Towards a Polymer-Brush-Based Friction Modifier for Oil. Tribol. Lett. 2021, 69, 124. [Google Scholar] [CrossRef]
- Nalam, P.C.; Pham, A.; Castillo, R.V.; Espinosa-Marzal, R.M. Adsorption Behavior and Nanotribology of Amine-Based Friction Modifiers on Steel Surfaces. J. Phys. Chem. C 2019, 123, 13672–13680. [Google Scholar] [CrossRef]
- Fry, B.M.; Moody, G.; Spikes, H.A.; Wong, J.S.S. Adsorption of Organic Friction Modifier Additives. Langmuir 2020, 36, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Hirayama, T.; Yamashita, N.; Adachi, M.; Oshio, T.; Tsuneoka, H.; Tagawa, K.; Yagishita, K.; Yamada, N.L. Relationship between Interfacial Adsorption of Additive Molecules and Reduction of Friction Coefficient in the Organic Friction Modifiers-ZDDP Combinations. Tribol. Int. 2022, 167, 107365. [Google Scholar] [CrossRef]
- Cyriac, F.; Yamashita, N.; Hirayama, T.; Yi, T.X.; Poornachary, S.K.; Chow, P.S. Mechanistic Insights into the Effect of Structural Factors on Film Formation and Tribological Performance of Organic Friction Modifiers. Tribol. Int. 2021, 164, 107243. [Google Scholar] [CrossRef]
- Yamashita, N.; Hirayama, T.; Hino, M.; Yamada, N.L. Neutron Reflectometry under High Shear in Narrow Gap for Tribology Study. Sci. Rep. 2023, 13, 18268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tsukamoto, M.; Zhang, H.; Mitsuya, Y.; Itoh, S.; Fukuzawa, K. Experimental Study of Application of Molecules with a Cyclic Head Group Containing a Free Radical as Organic Friction Modifiers. J. Adv. Mech. Des. Syst. Manuf. 2020, 14, JAMDSM0044. [Google Scholar] [CrossRef]
- Hou, J.; Tsukamoto, M.; Hor, S.; Chen, X.; Yang, J.; Zhang, H.; Koga, N.; Yasuda, K.; Fukuzawa, K.; Itoh, S.; et al. Molecules with a TEMPO-Based Head Group as High-Performance Organic Friction Modifiers. Friction 2023, 11, 316–332. [Google Scholar] [CrossRef]
- Hu, W.; Xu, Y.; Zeng, X.; Li, J. Alkyl-Ethylene Amines as Effective Organic Friction Modifiers for the Boundary Lubrication Regime. Langmuir 2020, 36, 6716–6727. [Google Scholar] [CrossRef]
- Desanker, M.; He, X.; Lu, J.; Liu, P.; Pickens, D.B.; Delferro, M.; Marks, T.J.; Chung, Y.-W.; Wang, Q.J. Alkyl-Cyclens as Effective Sulfur- and Phosphorus-Free Friction Modifiers for Boundary Lubrication. ACS Appl. Mater. Inter. 2017, 9, 9118–9125. [Google Scholar] [CrossRef]
- Desanker, M.; He, X.; Lu, J.; Johnson, B.A.; Liu, Z.; Delferro, M.; Ren, N.; Lockwood, F.E.; Greco, A.; Erdemir, A.; et al. High-Performance Heterocyclic Friction Modifiers for Boundary Lubrication. Tribol. Lett. 2018, 66, 50. [Google Scholar] [CrossRef]
- Ouyang, C.; Bai, P.; Wen, X.; Zhang, X.; Meng, Y.; Ma, L.; Tian, Y. Effects of Conformational Entropy on Antiwear Performances of Organic Friction Modifiers. Tribol. Int. 2021, 156, 106848. [Google Scholar] [CrossRef]
- Jacobs, T.D.B.; Ryan, K.E.; Keating, P.L.; Grierson, D.S.; Lefever, J.A.; Turner, K.T.; Harrison, J.A.; Carpick, R.W. The Effect of Atomic-Scale Roughness on the Adhesion of Nanoscale Asperities: A Combined Simulation and Experimental Investigation. Tribol. Lett. 2013, 50, 81–93. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, Q.; Sun, K.; Liu, G.; Zhou, F. Understanding Adsorption Behaviors of Organic Friction Modifiers on Hydroxylated SiO2 (001) Surfaces: Effects of Molecular Polarity and Temperature. Langmuir 2020, 36, 8543–8553. [Google Scholar] [CrossRef] [PubMed]
- Ewen, J.P.; Kannam, S.K.; Todd, B.D.; Dini, D. Slip of Alkanes Confined between Surfactant Monolayers Adsorbed on Solid Surfaces. Langmuir 2018, 34, 3864–3873. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, J.; Yasuda, K.; Koga, N.; Zhang, H. Adsorption Behavior of TEMPO-Based Organic Friction Modifiers during Sliding between Iron Oxide Surfaces: A Molecular Dynamics Study. Langmuir 2022, 38, 3170–3179. [Google Scholar] [CrossRef] [PubMed]
- Eder, S.J.; Vernes, A.; Betz, G. On the Derjaguin Offset in Boundary-Lubricated Nanotribological Systems. Langmuir 2013, 29, 13760–13772. [Google Scholar] [CrossRef] [PubMed]
- Ewen, J.P.; Echeverri Restrepo, S.; Morgan, N.; Dini, D. Nonequilibrium Molecular Dynamics Simulations of Stearic Acid Adsorbed on Iron Surfaces with Nanoscale Roughness. Tribol. Int. 2017, 107, 264–273. [Google Scholar] [CrossRef]
- Gao, J.; Luedtke, W.D.; Landman, U. Structures, Solvation Forces and Shear of Molecular Films in a Rough Nano-Confinement. Tribol. Lett. 2000, 9, 3–13. [Google Scholar] [CrossRef]
- Bhushan, B.; Israelachvili, J.N.; Landman, U. Nanotribology: Friction, Wear and Lubrication at the Atomic Scale. Nature 1995, 374, 607–616. [Google Scholar] [CrossRef]
- Math, S.; Gao, J.; Landman, U. Interfacial Segregation, Structure, and Diffusion of n -Alkane Mixture Films Adsorbed on Smooth and Rough Gold Surfaces. J. Phys. Chem. C 2022, 126, 4209–4219. [Google Scholar] [CrossRef]
- Zhang, H.; Fukuda, M.; Washizu, H.; Kinjo, T.; Yoshida, H.; Fukuzawa, K.; Itoh, S. Shear Thinning Behavior of Nanometer-Thick Perfluoropolyether Films Confined between Corrugated Solid Surfaces: A Coarse-Grained Molecular Dynamics Study. Tribol. Int. 2016, 93, 163–171. [Google Scholar] [CrossRef]
- Wang, H.; Junghans, C.; Kremer, K. Comparative Atomistic and Coarse-Grained Study of Water: What Do We Lose by Coarse-Graining? Eur. Phys. J. E 2009, 28, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Kobayashi, T.; Zhang, H.; Fukuzawa, K.; Itoh, S. Enhancing Pressure Consistency and Transferability of Structure-Based Coarse-Graining. Phys. Chem. Chem. Phys. 2023, 25, 2256–2264. [Google Scholar] [CrossRef] [PubMed]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Junghans, C.; Praprotnik, M.; Kremer, K. Transport Properties Controlled by a Thermostat: An Extended Dissipative Particle Dynamics Thermostat. Soft Matter 2008, 4, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Zhang, H.; Fukuzawa, K.; Itoh, S. Effect of Transverse Dissipative Particle Dynamics on Dynamic Properties of Nanometer-Thick Liquid Films on Solid Surfaces. Mol. Simulat. 2020, 46, 1281–1290. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; In ’T Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Fukuda, M.; Zhang, H.; Ishiguro, T.; Fukuzawa, K.; Itoh, S. Structure-Based Coarse-Graining for Inhomogeneous Liquid Polymer Systems. J. Chem. Phys. 2013, 139, 054901. [Google Scholar] [CrossRef]
- Yamamoto, S.; Matsuda, H.; Kasahara, Y.; Iwahashi, M.; Takagi, T.; Baba, T.; Kanamori, T. Dynamic Molecular Behavior of Semi-Fluorinated Oleic, Elaidic and Stearic Acids in the Liquid State. J. Oleo Sci. 2012, 61, 649–657. [Google Scholar] [CrossRef]
- Wheeler, D.H.; Potente, D.; Wittcoff, H. Adsorption of Dimer, Trimer, Stearic, Oleic, Linoleic, Nonanoic and Azelaic Acids on Ferric Oxide. J. Am. Oil Chem. Soc. 1971, 48, 125–128. [Google Scholar] [CrossRef]
- Hess, B. Determining the Shear Viscosity of Model Liquids from Molecular Dynamics Simulations. J. Chem. Phys. 2002, 116, 209–217. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Williamson, J.B.P. Contact of Nominally Flat Surfaces. Proc. R. Soc. A Math. Phys. Eng. Sci. 1966, 295, 300–319. [Google Scholar] [CrossRef]
- Tomanik, E.; Chacon, H.; Teixeira, G. A Simple Numerical Procedure to Calculate the Input Data of Greenwood-Williamson Model of Asperity Contact for Actual Engineering Surfaces. Tribol. Ser. 2003, 41, 205–215. [Google Scholar] [CrossRef]
- Bhushan, B. Surface Roughness Analysis and Measurement Techniques. In Modern Tribology Handbook, Two Volume Set; CRC press: Boca Raton, FL, USA, 2000; pp. 79–150. [Google Scholar]
- Fisher, C.H. N-fatty Acids: Comparison of Published Densities and Molar Volumes. J. Am. Oil Chem. Soc. 1995, 72, 681–685. [Google Scholar] [CrossRef]
[(kcal·fs/(mol·Å2)] | Coarse-Grained | All-Atom |
---|---|---|
Viscosity, [mPa∙s] | ||
1.34 | 1.18 | |
5.98 | 6.24 | |
CoF | ||
0.0906 | 0.0912 | |
0.211 | 0.196 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Chong, W.W.F.; Zhang, H. Coarse-Grained Molecular Dynamics Simulations of Organic Friction Modifier Adsorption on Rough Surfaces under Shear. Lubricants 2024, 12, 30. https://doi.org/10.3390/lubricants12020030
Tang J, Chong WWF, Zhang H. Coarse-Grained Molecular Dynamics Simulations of Organic Friction Modifier Adsorption on Rough Surfaces under Shear. Lubricants. 2024; 12(2):30. https://doi.org/10.3390/lubricants12020030
Chicago/Turabian StyleTang, Jiahao, William Woei Fong Chong, and Hedong Zhang. 2024. "Coarse-Grained Molecular Dynamics Simulations of Organic Friction Modifier Adsorption on Rough Surfaces under Shear" Lubricants 12, no. 2: 30. https://doi.org/10.3390/lubricants12020030
APA StyleTang, J., Chong, W. W. F., & Zhang, H. (2024). Coarse-Grained Molecular Dynamics Simulations of Organic Friction Modifier Adsorption on Rough Surfaces under Shear. Lubricants, 12(2), 30. https://doi.org/10.3390/lubricants12020030