Formation Mechanisms and Crack Propagation Behaviors of White Etching Layers and Brown Etching Layers on Raceways of Failure Bearings
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
3.1. Surface Morphologies of the Two Bearing Samples
3.2. Section Microstructure of the Two Bearing Samples (Optical Microscope)
3.3. Section Microstructure and Crack Propagation Behavior of the Two Bearing Samples (Scanning Electron Microscope)
4. Discussion
4.1. The Formation Mechanisms of the WEL and BEL on Martensite-Bearing Raceways
4.2. The Crack Propagation Behavior in the Surface Stratification Microstructure
5. Conclusions
- The BEL mainly consists of quenched martensite with hardness values of 800–900 HV. The thermal-induced effect is the main formation mechanism. Surface temperature first exceeds the A3 point during operation, and then rapidly cools, which leads to the austenitizing of the matrix and the transformation into quenched martensite. The bainite exists at the boundary of the BEL/matrix, and formation of the bainite originates from the slower cooling rate compared with that of the BEL regions.
- It can be speculated that the WEL form after the BEL. The surface temperature increases again, leading to the surface austenitizing or high-temperature tempering. Austenite can retain room temperature due to slow cooling along with the occurrence of dissolution–diffusion–redistribution of carbon in this region. The coarse and deformed austenite grains indicate that the refinement and growth of grains occur in the austenitizing process.
- Bilateral cracks may be the typical features of raceway surfaces with the WEL and BEL. The cracks can initiate at the boundaries of the WEL/BEL/matrix. The crack propagation behaviors are significantly affected by the mechanical properties of the WEL and BEL. They can hardly propagate from a softer WEL to a harder BEL. Thus, cracks in the WEL regions are shallower.
- Because the BEL mainly consists of brittle quenched martensite, the cracks can easily propagate downward. Thus, the depth of cracks in the BEL can exceed 100 μm. The plastic deformation and gradually decreasing contact stress in the subsurface region can simultaneously hinder crack propagation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, B.H.; Al-Juboori, A.; Zhu, H.T.; Zhu, Q.; Li, H.J.; Tieu, K. Formation mechanism and evolution of white etching layers on different rail grades. Int. J. Fatigue 2022, 163, 107100. [Google Scholar] [CrossRef]
- Al-Juboor, A.; Zhu, H.; Wexler, D.; Li, H.; Lu, C.; McCusker, A.; McLeod, J.; Pannila, S.; Barnes, J. Characterisation of White Etching Layers formed on rails subjected to different traffic conditions. Wear 2019, 436–437, 202998. [Google Scholar] [CrossRef]
- Takahashi, J.; Kawakami, K.; Ueda, M. Atom probe tomography analysis of the white etching layer in a rail track surface. Acta Mater. 2010, 58, 3602–3612. [Google Scholar] [CrossRef]
- Mojumder, S.; Mishra, K.; Singh, K.; Qiu, C.; Mutton, P.; Singh, A. Effect of track curvature on the microstructure evolution and cracking in the longitudinal section of lower gauge corner flow lips formed in rails. Eng. Fail. Anal. 2022, 135, 106117. [Google Scholar] [CrossRef]
- Nguyen, B.H.; Al-Juboori, A.; Zhu, H.T.; Gazder, A.A.; Li, H.J.; Tieu, K. Fracture mechanisms in rails with mechanically and thermomechanically-induced white etching layers under three-point bending. Eng. Fail. Anal. 2022, 131, 105813. [Google Scholar] [CrossRef]
- Li, S.G.; Wu, J.; Petrov, R.H.; Li, Z.; Dollevoet, R.; Sietsma, J. “Brown etching layer”: A possible new insight into the crack initiation of rolling contact fatigue in rail steels? Eng. Fail. Anal. 2016, 66, 8–18. [Google Scholar] [CrossRef]
- Kumar, A.; Agarwal, G.; Petrov, R.; Goto, S.; Sietsma, J.; Herbig, M. Microstructural evolution of white and brown etching layers in pearlitic rail steels. Acta Mater. 2019, 171, 48–64. [Google Scholar] [CrossRef]
- Messaadi, M.; Steenbergen, M. Stratified surface layers on rails. Wear 2018, 414–415, 151–162. [Google Scholar] [CrossRef]
- Wan, L.B.; Li, S.X.; Lu, S.Y.; Su, Y.S.; Shu, X.D.; Huang, H.B. Case study: Formation of white etching layers in a failed rolling element bearing race. Wear 2018, 396–397, 126–134. [Google Scholar] [CrossRef]
- Guzmán, F.G.; Sous, C.; Van, L.H.; Jacobs, G. An energetic approach for the prognosis of thermally induced white etching layers in bearing steel 100CrMn6. Tribol. Int. 2020, 143, 106096. [Google Scholar] [CrossRef]
- Zhang, X.C.; Wu, D.; Xia, Z.F.; Zhang, Y.M.; Li, Y.F.; Wang, J.Q.; Han, E.H. Microstructure characteristics and formation mechanisms of white etching layer (WEL) and brown etching layer (BEL) on martensite bearing raceway. J. Mater. Res. Technol. 2023, 25, 4876–4887. [Google Scholar] [CrossRef]
- Gao, G.H.; Liu, M.; Gui, X.L.; Hu, J.; Luan, J.H.; Jiao, Z.B.; Wang, X.; Bai, B.Z.; Yang, Z.G. Heterogenous structure and formation mechanism of white and brown etching layers in bainitic rail steel. Acta Mater. 2023, 250, 118887. [Google Scholar] [CrossRef]
- Zhou, Y.; Mo, J.L.; Cai, Z.B.; Deng, C.G.; Peng, J.F.; Zhu, M.H. Third-body and crack behavior in white etching layer induced by sliding–rolling friction. Tribol. Int. 2019, 140, 105882. [Google Scholar] [CrossRef]
- Lian, Q.L.; Deng, G.Y.; Zhu, H.T.; Li, H.J.; Wang, X.; Liu, Z.M. Influence of white etching layer on rolling contact behavior at wheel-rail interface. Friction 2020, 8, 1178–1196. [Google Scholar] [CrossRef]
- Merino, P.; Cazottes, S.; Lafilé, V.; Risbet, M.; Saulot, A.; Bouvier, S.; Marteau, J.; Berthier, Y. An attempt to generate mechanical white etching layer on rail surface on a new rolling contact test bench. Wear 2021, 482–483, 203945. [Google Scholar] [CrossRef]
- Baumann, G.; Fecht, H.J.; Liebelt, S. Formation of white-etching layers on rail treads. Wear 1996, 191, 133–140. [Google Scholar] [CrossRef]
- Österle, W.; Rooch, H.; Pyzalla, A.; Wang, L. Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction. Mater. Sci. Eng. A 2001, 303, 150–157. [Google Scholar] [CrossRef]
- Wu, J.; Petrov, R.H.; Naeimi, M.; Li, Z.; Dollevoet, R.; Sietsma, J. Laboratory simulation of martensite formation of white etching layer in rail steel. Int. J. Fatigue 2016, 91, 11–20. [Google Scholar] [CrossRef]
- Su, C.R.; Shi, L.B.; Wang, W.J.; Wang, D.Z.; Cai, Z.B.; Liu, Q.Y.; Zhou, Z.R. Investigation on the rolling wear and damage properties of laser dispersed quenched rail materials treated with different ratios. Tribol. Int. 2019, 135, 488–499. [Google Scholar] [CrossRef]
- Wilches, P.L.V.; Wang, L.; Mellor, B.G.; Huang, Y. White etching structures in annealed 52100 bearing steel arising from high-pressure torsion tests. Tribol. Int. 2021, 164, 107187. [Google Scholar] [CrossRef]
- Qin, Y.; Mayweg, D.; Tung, P.Y.; Pippan, R.; Herbig, M. Mechanism of cementite decomposition in 100Cr6 bearing steels during high pressure torsion. Acta Mater. 2020, 201, 79–93. [Google Scholar] [CrossRef]
- Yang, Z.N.; Jiang, F.; Wang, Y.M.; Wang, Q.C.; Huang, M.X.; Wang, Y.F.; Chen, C.; Zhang, F.C. Making composite steel higher strength and higher ductility via introducing carbon diffusion strategy. Mater. Res. Lett. 2021, 9, 391–397. [Google Scholar] [CrossRef]
- Wang, Y.L.; Chen, Y.L.; Yu, W. Effect of Cr/Mn segregation on pearlite—Martensite banded structure of high carbon bearing steel. Int. J. Miner. Metall. Mater. 2021, 4, 665–675. [Google Scholar] [CrossRef]
- Elkot, M.N.; Sun, B.H.; Zhou, X.Y.; Ponge, D.; Raabe, D. On the formation and growth of grain boundary κ-carbides in austenitic high-Mn lightweight steels. Mater. Res. Lett. 2024, 12, 10–16. [Google Scholar] [CrossRef]
- Li, Y.S.; Dong, Y.W.; Jiang, Z.H.; Tang, Q.F.; Du, S.Y.; Hou, Z.W. Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel. Int. J. Miner. Metall. Mater. 2023, 30, 324. [Google Scholar] [CrossRef]
- Lojkowski, W.; Djahanbakhsh, M.; Bürkle, G.; Gierlotka, S.; Zielinski, W.; Fecht, H.J. Nanostructure formation on the surface of railway tracks. Mater. Sci. Eng. A 2001, 303, 197–208. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Duan, C.Z.; Wang, M.J.; Sun, W. White and dark layer formation mechanism in hard cutting of AISI52100 steel. J. Manuf. Process. 2018, 32, 878–887. [Google Scholar] [CrossRef]
- Pal, S.; Daniel, W.J.T.; Farjoo, M. Early stages of rail squat formation and the role of a white etching layer. Int. J. Fatigue 2013, 52, 144–156. [Google Scholar] [CrossRef]
- Al-Juboori, A.; Wexler, D.; Li, H.; Zhu, H.T.; Lu, C.; McCusker, A.; McLeod, J.G.; Pannil, S.; Wang, Z. Squat formation and the occurrence of two distinct classes of white etching layer on the surface of rail steel. Int. J. Fatigue 2017, 104, 52–60. [Google Scholar] [CrossRef]
- Duan, C.; Qu, S.; Hu, X.; Jia, S.; Li, X. Evaluation of the influencing factors of combined surface modification on the rolling contact fatigue performance and crack growth of AISI 52100 steel. Wear 2022, 494–495, 204252. [Google Scholar] [CrossRef]
- Wang, J.T.; Qu, S.G.; Lai, F.Q.; Hu, X.F.; Deng, Y.Q.; Li, X.Q. Synergistic effects of a combined surface modification technology on rolling contact fatigue behaviors of 20CrMoH steel under different contact stresses. Int. J. Fatigue 2021, 153, 106487. [Google Scholar] [CrossRef]
- Gao, B.; Liu, Y.; Chen, X.J.; Han, Z.M.; Xu, X.Y.; Wang, Z.B. Effects of rare earth addition and service mode on surface integrity evolution of high-end machine tool spindle bearings under service. J. Mater. Res. Technol 2023, 27, 2814–2821. [Google Scholar] [CrossRef]
- Ostash, O.P.; Anofriev, V.H.; Andreiko, I.M. On the concept of selection of steels for high-strength railroad wheels. Mater. Sci. 2013, 48, 697–703. [Google Scholar] [CrossRef]
- Ren, Z.D.; Li, B.Z.; Zhou, Q.Z. Rolling contact fatigue crack propagation on contact surface and subsurface in mixed mode I + II + III fracture. Wear 2022, 506–507, 204459. [Google Scholar] [CrossRef]
- Seo, J.; Kwon, S.; Jun, H.; Lee, D.H. Numerical stress analysis and rolling contact fatigue of White Etching Layer on rail steel. Int. J. Fatigue 2011, 33, 203–211. [Google Scholar] [CrossRef]
- Carroll, R.I.; Beynon, J.H. Rolling contact fatigue of white etching layer: Part 1. Wear 2007, 262, 1253–1266. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, X.C.; Li, Y.F.; Wang, J.Q.; Han, E.H. Characterization of machined surface quality and near-surface microstructure of a high speed thrust angular contact ball bearing. J. Mater. Sci. Technol. 2021, 86, 219–226. [Google Scholar] [CrossRef]
- Zhang, X.C.; Wu, D.; Xia, Z.F.; Li, Y.F.; Wang, J.Q.; Han, E.H. Study on surface fatigue and metamorphic layer of raceway of hybrid ceramic ball bearing in high-speed spindle for machine tool. Eng. Fail. Anal. 2023, 143, 106928. [Google Scholar] [CrossRef]
- Zhang, X.C.; Wu, D.; Xia, Z.F.; Li, Y.F.; Wang, J.Q.; Han, E.H. Characteristics and mechanism of surface damage of hybrid ceramic ball bearings for high-precision machine tool. Eng. Fail. Anal. 2022, 142, 106784. [Google Scholar] [CrossRef]
- Zhang, X.C.; Wu, D.; Xia, Z.F.; Li, Y.F.; Wang, J.Q.; Han, E.H. Comparative Study on Surface Contact Fatigue of Machine Tool Bearing Raceways with Different Rolling Elements: Two Failure Bearings Case Studies. Tribol. Lett. 2023, 71, 55–68. [Google Scholar] [CrossRef]
- Mallipeddi, D.; Norell, M.; Naidu, V.M.S.; Zhang, X.; Näslund, M.; Nyborg, L. Micropitting and microstructural evolution during gear testing-from initial cycles to failure. Tribol. Int. 2021, 156, 106820. [Google Scholar] [CrossRef]
- Zakerinia, H.; Kermanpur, A.; Najafizadeh, A. Color metallography; a suitable method for characterization of martensite and bainite in multiphase steels. Inte. J. Iron. Steel. Society. Iran 2009, 6, 14–18. [Google Scholar]
- Steenbergen, M. Rolling contact fatigue: Spalling versus transverse fracture of rails. Wear 2017, 380–381, 96–105. [Google Scholar] [CrossRef]
- Perez, M.; Sidoroff, C.; Vincent, A.; Esnouf, C. Microstructural evolution of martensitic 100Cr6 bearing steel during tempering: From thermoelectric power measurements to the prediction of dimensional changes. Acta Mater. 2009, 57, 3170–3181. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H.; Honeycombe, R.W.K. Steels: Microstructure and Properties; Elsevier: London, UK, 2017. [Google Scholar]
- Bhadeshia, H.K.D.H. Bainite in Steels: Transformations, Microstructure and Properties; IOM Communications: London, UK, 2001. [Google Scholar]
- Zhou, Y.; Peng, J.F.; Luo, Z.P.; Cao, B.B.; Jin, X.S.; Zhu, M.H. Phase and microstructural evolution in white etching layer of a pearlitic steel during rolling-sliding friction. Wear 2016, 362–363, 8–17. [Google Scholar] [CrossRef]
- Pal, S.; Daniel, W.J.T.; Valente, C.H.G.; Wilson, A.; Atrens, A. Surface damage on new AS60 rail caused by wheel slip. Eng. Fail. Anal. 2012, 22, 152–165. [Google Scholar] [CrossRef]
- Pan, R.; Ren, R.; Chen, C.H.; Zhao, X.J. The microstructure analysis of white etching layer on treads of rails. Eng. Fail. Anal. 2017, 82, 39–46. [Google Scholar] [CrossRef]
- Thiercelin, L.; Saint-Aimé, L.; Lebon, F.; Saulot, A. Thermomechanical modelling of the tribological surface transformations in the railroad network (white etching layer). Mech. Mater. 2020, 151, 103636. [Google Scholar] [CrossRef]
- Rasmussen, C.J.; Fæster, S.; Dhar, S.; Quaade, J.V.; Manuel, B.; Danielsen, H.K. Surface crack formation on rails at grinding induced martensite white etching layers. Wear 2017, 384–385, 8–14. [Google Scholar] [CrossRef]
Elements | C | Si | Mn | Cr | Mo | P | S | Ni | Cu |
---|---|---|---|---|---|---|---|---|---|
Reference Ranges | 0.95~1.05 | 0.15~0.35 | 0.25~0.45 | 1.40~1.65 | ≤0.10 | ≤0.025 | ≤0.02 | ≤0.25 | ≤0.25 |
Sample 1 | 0.98 | 0.31 | 0.41 | 1.56 | <0.01 | 0.018 | 0.0041 | 0.05 | 0.06 |
Sample 2 | 0.95 | 0.30 | 0.40 | 1.64 | 0.0443 | 0.0126 | 0.0038 | 0.0056 | 0.0625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wu, D.; Zhang, Y.; Xu, L.; Wang, J.; Han, E.-H. Formation Mechanisms and Crack Propagation Behaviors of White Etching Layers and Brown Etching Layers on Raceways of Failure Bearings. Lubricants 2024, 12, 59. https://doi.org/10.3390/lubricants12020059
Zhang X, Wu D, Zhang Y, Xu L, Wang J, Han E-H. Formation Mechanisms and Crack Propagation Behaviors of White Etching Layers and Brown Etching Layers on Raceways of Failure Bearings. Lubricants. 2024; 12(2):59. https://doi.org/10.3390/lubricants12020059
Chicago/Turabian StyleZhang, Xiaochen, Di Wu, Yaming Zhang, Lijia Xu, Jianqiu Wang, and En-Hou Han. 2024. "Formation Mechanisms and Crack Propagation Behaviors of White Etching Layers and Brown Etching Layers on Raceways of Failure Bearings" Lubricants 12, no. 2: 59. https://doi.org/10.3390/lubricants12020059
APA StyleZhang, X., Wu, D., Zhang, Y., Xu, L., Wang, J., & Han, E. -H. (2024). Formation Mechanisms and Crack Propagation Behaviors of White Etching Layers and Brown Etching Layers on Raceways of Failure Bearings. Lubricants, 12(2), 59. https://doi.org/10.3390/lubricants12020059