Engine Oil Degradation in the Real-World Bus Fleet Test Based on Two Consecutive Operational Intervals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Vehicle Characteristics
2.3. Operating Conditions
2.4. Methods
3. Results and Discussion
3.1. Rheological Properties
3.2. Impurities
3.3. Elemental Analysis
3.4. Engine Oil Degradation Processes
4. Conclusions
5. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ACEA. Fact Sheet: Buses; ACEA—European Automobile Manufacturers’ Association: Brussels, Belgium, 2023. [Google Scholar]
- Macian, V.; Tormos, B.; Miró, G.; Pérez, T. Assessment of Low-Viscosity Oil Performance and Degradation in a Heavy Duty Engine Real-World Fleet Test. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2016, 230, 729–743. [Google Scholar] [CrossRef]
- European Commission. Reducing CO2 Emissions from Heavy-Duty Vehicles. Available online: https://climate.ec.europa.eu/eu-action/transport/road-transport-reducing-co2-emissions-vehicles/reducing-co2-emissions-heavy-duty-vehicles_en (accessed on 11 February 2024).
- International Council on Clean Transportation. A Roadmap for Heavy-Duty Engine CO2 Standards within the European Union Framework. Available online: https://theicct.org/publication/a-roadmap-for-heavy-duty-engine-co2-standards-within-the-european-union-framework/ (accessed on 11 February 2024).
- Norris, J.; Escher, G. Heavy Duty Vehicles Technology Potential and Cost Study. Int. Counc. Clean Transp. 2017. Available online: https://theicct.org/publications/heavy-duty-vehicles-technology-potential-and-cost-study (accessed on 11 February 2024).
- Van Dam, W.; Kleijwegt, P.; Torreman, M.; Parsons, G. The Lubricant Contribution to Improved Fuel Economy in Heavy Duty Diesel Engines; SAE: Melbourne, Australian, 2009; p. 2009-01-2856. [Google Scholar]
- Rahnejat, H. Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 1-84569-993-9. [Google Scholar]
- Lakshminarayanan, P.; Nayak, N.S. Critical Component Wear in Heavy Duty Engines; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 0-470-82885-4. [Google Scholar]
- Wong, V.W.; Tung, S.C. Overview of Automotive Engine Friction and Reduction Trends–Effects of Surface, Material, and Lubricant-Additive Technologies. Friction 2016, 4, 1–28. [Google Scholar] [CrossRef]
- Gołębiowski, W.; Wolak, A.; Zając, G. The Influence of the Presence of a Diesel Particulate Filter (DPF) on the Physical and Chemical Properties as Well as the Degree of Concentration of Trace Elements in Used Engine Oils. Pet. Sci. Technol. 2019, 37, 746–755. [Google Scholar] [CrossRef]
- Macián, V.; Tormos, B.; Bastidas, S.; Pérez, T. Improved Fleet Operation and Maintenance through the Use of Low Viscosity Engine Oils: Fuel Economy and Oil Performance. Eksploat. Niezawodn.—Maint. Reliab. 2020, 22, 201–211. [Google Scholar] [CrossRef]
- de Jonge, B.; Scarf, P.A. A Review on Maintenance Optimization. Eur. J. Oper. Res. 2020, 285, 805–824. [Google Scholar] [CrossRef]
- Hamasha, M.M.; Bani-Irshid, A.H.; Al Mashaqbeh, S.; Shwaheen, G.; Al Qadri, L.; Shbool, M.; Muathen, D.; Ababneh, M.; Harfoush, S.; Albedoor, Q. Strategical Selection of Maintenance Type under Different Conditions. Sci. Rep. 2023, 13, 15560. [Google Scholar] [CrossRef] [PubMed]
- Kučera, M.; Kopčanová, S.; Sejkorová, M. Lubricant Analysis as the Most Useful Tool in the Proactive Maintenance Philosophies of Machinery and Its Components. Manag. Syst. Prod. Eng. 2020, 28, 196–201. [Google Scholar] [CrossRef]
- Pichler, J.; Maria Eder, R.; Besser, C.; Pisarova, L.; Dörr, N.; Marchetti-Deschmann, M.; Frauscher, M. A Comprehensive Review of Sustainable Approaches for Synthetic Lubricant Components. Green Chem. Lett. Rev. 2023, 16, 2185547. [Google Scholar] [CrossRef]
- Raposo, H.; Farinha, J.T.; Fonseca, I.; Galar, D. Predicting Condition Based on Oil Analysis—A Case Study. Tribol. Int. 2019, 135, 65–74. [Google Scholar] [CrossRef]
- Wakiru, J.M.; Pintelon, L.; Muchiri, P.N.; Chemweno, P.K. A Review on Lubricant Condition Monitoring Information Analysis for Maintenance Decision Support. Mech. Syst. Signal Process. 2019, 118, 108–132. [Google Scholar] [CrossRef]
- Agocs, A.; Nagy, A.L.; Ristic, A.; Tabakov, Z.M.; Raffai, P.; Besser, C.; Frauscher, M. Oil Degradation Patterns in Diesel and Petrol Engines Observed in the Field—An Approach Applying Mass Spectrometry. Lubricants 2023, 11, 404. [Google Scholar] [CrossRef]
- Dörr, N.; Brenner, J.; Ristić, A.; Ronai, B.; Besser, C.; Pejaković, V.; Frauscher, M. Correlation between Engine Oil Degradation, Tribochemistry, and Tribological Behavior with Focus on ZDDP Deterioration. Tribol. Lett. 2019, 67, 62. [Google Scholar] [CrossRef]
- Sakamoto, K.; Mizutani, F.; Shimomura, M.; Yama, K.; Matsunaga, T.; Lee, S.-S. Evaluation of Engine Oil Degradation Based on Viscosity and Transmitted Light Intensity Measurements. Sens. Actuators Phys. 2023, 361, 114597. [Google Scholar] [CrossRef]
- Shinde, H.M.; Bewoor, A.K. Evaluating Petrol Engine Oil Deterioration through Oxidation and Nitration Parameters by Low-Cost IR Sensor. Appl. Petrochem. Res. 2020, 10, 83–94. [Google Scholar] [CrossRef]
- Uy, D.; Simko, S.J.; Carter, R.O.; Jensen, R.K.; Gangopadhyay, A.K. Characterization of Anti-Wear Films Formed from Fresh and Aged Engine Oils. Wear 2007, 263, 1165–1174. [Google Scholar] [CrossRef]
- Mendes, C.; Raposo, H.; Ferraz, R.; Farinha, J.T. The Economic Management of Physical Assets: The Practical Case of an Urban Passenger Transport Company in Portugal. Sustainability 2023, 15, 11492. [Google Scholar] [CrossRef]
- Martins, A.; Fonseca, I.; Farinha, J.T.; Reis, J.; Cardoso, A.J.M. Maintenance Prediction through Sensing Using Hidden Markov Models—A Case Study. Appl. Sci. 2021, 11, 7685. [Google Scholar] [CrossRef]
- Nagy, A.L.; Agocs, A.; Ronai, B.; Raffai, P.; Rohde-Brandenburger, J.; Besser, C.; Dörr, N. Rapid Fleet Condition Analysis through Correlating Basic Vehicle Tracking Data with Engine Oil FT-IR Spectra. Lubricants 2021, 9, 114. [Google Scholar] [CrossRef]
- Rodrigues, J.; Costa, I.; Farinha, J.T.; Mendes, M.; Margalho, L. Predicting Motor Oil Condition Using Artificial Neural Networks and Principal Component Analysis. Eksploat. Niezawodn. 2020, 22, 440–448. [Google Scholar] [CrossRef]
- Gołębiowski, W.; Zając, G.; Sejkorová, M.; Wolak, A. Assessment of Oil Change Intervals in Urban Buses Based on the Selected Physicochemical Properties of Used Engine Oils. Combust. Engines 2024, 196, 15–23. [Google Scholar] [CrossRef]
- Sejkorová, M.; Šarkan, B.; Veselík, P.; Hurtová, I. FTIR Spectrometry with PLS Regression for Rapid TBN Determination of Worn Mineral Engine Oils. Energies 2020, 13, 6438. [Google Scholar] [CrossRef]
- Al Sheikh Omar, A.; Salehi, F.M.; Farooq, U.; Neville, A.; Morina, A. Effect of Zinc Dialkyl Dithiophosphate Replenishment on Tribological Performance of Heavy-Duty Diesel Engine Oil. Tribol. Lett. 2022, 70, 24. [Google Scholar] [CrossRef] [PubMed]
- Hönig, V.; Procházka, P.; Obergruber, M.; Kučerová, V.; Mejstřík, P.; Macků, J.; Bouček, J. Determination of Tractor Engine Oil Change Interval Based on Material Properties. Materials 2020, 13, 5403. [Google Scholar] [CrossRef]
New Oil Properties | Value | |
---|---|---|
Oil specifications | SAE viscosity classification | 10W40 |
ACEA | E7, E9 | |
API | CK-4 | |
Physicochemical properties | Kinematic viscosity at 40 °C [mm2/s] | 94 |
Kinematic viscosity at 100 °C [mm2/s] | 14.9 | |
Viscosity index | 165 | |
Total base number (TBN) | 9.5 | |
Elemental composition | Calcium (Ca) [mg/kg] | 1047 |
Phosphor (P) [mg/kg] | 971 | |
Sulfur (S) [mg/kg] | 3011 | |
Zinc (Zn) [mg/kg] | 1194 |
Sample Information Section | Oil Refills Section | ||||||
---|---|---|---|---|---|---|---|
No. | Sample Code | Bus Model | Operating Conditions | Bus Mileage [km] | Mileage Since Last Oil Change [km] | Amount of Oil Refilled [L] | Number of Days before Oil Sample Collecion |
1 | PD489IA | SOR E6 Low | intercity | 30,000 | 30,000 | 0 | -- |
2 | PD489IA_2 | SOR E6 Low | intercity | 60,000 | 30,000 | 3 | 4 |
3 | PD310IA | SOR E6 | intercity | 28,524 | 28,524 | 5 | 16 |
4 | PD310IA_2 | SOR E6 | intercity | 62,000 | 33,476 | 7 | 44 |
5 | PD496HG | Solaris E6 | city | 213,000 | 30,000 | 7 | 33 |
6 | PD496HG_2 | Solaris E6 | city | 242,000 | 29,000 | 3 | 28 |
7 | PD724HF | Solaris E6 | city | 185,000 | 26,000 | 4 | 118 |
8 | PD724HF_2 | Solaris E6 | city | 220,740 | 35,740 | 3 | 43 |
9 | PD587HG | Solaris E6 | city | 220,900 | 31,900 | 7 | 12 |
10 | PD587HG_2 | Solaris E6 | city | 248,000 | 27,100 | 3 | 40 |
11 | PD654GN | Solaris E6 | city | 295,000 | 34,000 | 5 | 3 |
12 | PD654GN_2 | Solaris E6 | city | 354,577 | 30,777 | 7 | 19 |
13 | PD382GY | Solaris E6 | city | 252,200 | 18,275 | 3 | 66 |
14 | PD382GY_2 | Solaris E6 | city | 285,000 | 35,000 | 10 | 18 |
Vehicle Brand | SOR | Solaris | Solaris |
---|---|---|---|
Type | CN 10,5 | Urbino 10,5 | Urbino 10,5 |
Type of bus | Intercity | City | City |
Registration numbers | PD489IA PD310IA | PD382GY, PD587HG, PD724HF, PD496HG | PD654GN |
Year of production | 2022 | 2020 | 2018 |
Engine manufacturer | FPT INDUSTRIAL | CUMMINS ENGINE | CUMMINS ENGINE |
Engine model | N67 | B6.7 | B6.7 |
Displacement | 6728 | 6700 | 6700 |
Engine power/rpm | 184 kW/2500 rpm | 182 kW/2100 rpm | 204 kW/2100 rpm |
Maximum torque/rpm torque | 950 Nm/1400 rpm | 1000 Nm/1000 rpm | 1100 Nm/1000 rpm |
Emission class | 595/2009*2018/932D (EURO VI) | 595/2009*2018/932D (EURO VI) | 595/2009*627/2014C (EURO VI) |
Transmision/degrees | Automatic/6 | Automatic/4 | Automatic/4 |
Tank capacity | 255 L | 310 L | 310 L |
Oil pan capacity | 15 L | 28 L | 28 L |
Exploitation Conditions | Intercity | City | ||||||
---|---|---|---|---|---|---|---|---|
Bus no. | PD489IA | PD496HG | PD587HG | PD382GY | ||||
Interval | I | II | I | II | I | II | I | II |
One drop (after 1 h) | ||||||||
One drop (after 24 h) | ||||||||
Bus no. | PD310IA | PD724HF | PD654GN | |||||
Interval | I | II | I | II | I | II | ||
One drop (after 1 h) | ||||||||
One drop (after 24 h) |
Exploitation Conditions | Intercity | City | ||
---|---|---|---|---|
Bus no. | PD489IA ** | PD496HG * | ||
Overal mileage [km] | 30,000 | 60,000 | 213,000 | 242,000 |
Mileage since last oil change [km] | 30,000 | 30,000 | 30,000 | 29,000 |
Blotter spot test (single drop after 24 h) | ||||
Bus no. | PD310IA ** | PD382GY */** | ||
Overal mileage [km] | 28,524 | 60,000 | 252,200 | 285,000 |
Mileage since last oil change [km] | 28,524 | 30,000 | 18,275 * | 35,000 ** |
Blotter spot test (single drop after 24 h) |
Sample | PD724HF | PD724HF_2 | PD382GY_2 |
---|---|---|---|
Overal mileage [km] | 185,000 | 220,740 | 285,000 |
Mileage since last oil change [km] | 26,000 | 35,740 | 35,000 |
Blotter spot test (three drops after 24 h) |
Sample Data | Abrasive Metals | Additives | |||||||
---|---|---|---|---|---|---|---|---|---|
Operating Condition | Sample Code | Overal Mileage [km] | Mileage on Oil [km] | Cu [ppm] | Fe [ppm] | P [ppm] | Zn [ppm] | Ca [ppm] | S [ppm] |
± SD | ± SD | ± SD | ± SD | ± SD | ± SD | ||||
Intercity | PD489IA | 30,000 | 30,000 | 170 ± 0.58 | 114 ± 0.58 | 844 ± 12.12 | 1164 ± 0.58 | 1062 ± 6.43 | 2414 ± 10.15 |
PD489IA_2 | 60,000 | 30,000 | 33.2 ± 0.21 | 76.73 ± 0.80 | 896 ± 6.11 | 1206 ± 2.08 | 1114 ± 3.79 | 2574 ± 12.10 | |
PD310IA | 28,524 | 28,524 | 155.67 ± 0.58 | 95.08 ± 0.24 | 840 ± 18.25 | 1158 ± 3.06 | 1026 ± 4.93 | 2352 ± 9.50 | |
PD310IA_2 | 62,000 | 33,476 | 32.24 ± 0.24 | 92.26 ± 0.23 | 879 ± 5.77 | 1215 ± 2.65 | 1112 ± 1.53 | 2450 ± 25.24 | |
City | PD496HG | 213,000 | 30,000 | 1.2 ± 0.09 | 41.18 ± 0.56 | 908 ± 26.03 | 1202 ± 1.53 | 1104 ± 4.58 | 2663 ± 18.93 |
PD496HG_2 | 242,000 | 29,000 | 1.16 ± 0.06 | 39.85 ± 0.24 | 919 ± 23.12 | 1226 ± 0.58 | 1115 ± 3.00 | 2659 ± 6.11 | |
PD724HF | 185,000 | 26,000 | 0.88 ± 0.06 | 41.16 ± 0.32 | 841 ± 31.90 | 1125 ± 1.53 | 1004 ± 6.66 | 2481 ± 19.40 | |
PD724HF_2 | 220,740 | 35,740 | 0.94 ± 0.05 | 51.3 ± 0.33 | 834 ± 13.75 | 1116 ± 1.73 | 978 ± 1.15 | 2360 ± 4.04 | |
PD587HG | 220,900 | 31,900 | 1.62 ± 0.01 | 47.16 ± 0.38 | 924 ± 24.01 | 1231 ± 2.65 | 1116 ± 3.79 | 2707 ± 18.33 | |
PD587HG_2 | 248,000 | 27,100 | 1.33 ± 0.06 | 43.02 ± 0.32 | 870 ± 4.73 | 1211 ± 1.53 | 1027 ± 4.16 | 2454 ± 5.69 | |
PD654GN | 295,000 | 34,000 | 0.67 ± 0.03 | 58.12 ± 0.11 | 862 ± 10.02 | 1147 ± 0.58 | 1032 ± 3.61 | 2558 ± 18.52 | |
PD654GN_2 | 354,777 | 30,777 | 0.63 ± 0.11 | 51.67 ± 3.60 | 824 ± 12.06 | 1132 ± 1.53 | 1014 ± 25.71 | 2540 ± 17.01 | |
PD382GY | 252,200 | 18,275 | 0.61 ± 0.03 | 28.4 ± 0.29 | 936 ± 5.86 | 1187 ± 0.58 | 1117 ± 12.49 | 2781 ± 18.45 | |
PD382GY_2 | 285,000 | 35,000 | 0.88 ± 0.05 | 43.63 ± 0.08 | 871 ± 17.62 | 1164 ± 0.58 | 1027 ± 8.74 | 2486 ± 7.55 |
Operating Condition | Sample Code | Overal Mileage [km] | Mileage on Oil [km] | Oxidation | Nitration | Sulfonation |
---|---|---|---|---|---|---|
[abs/0.1 mm] | [abs/0.1 mm] | [abs/0.1 mm] | ||||
Intercity | PD489IA | 30,000 | 30,000 | 0.147 | 0.017 | 0.145 |
PD489IA_2 | 60,000 | 30,000 | 0.151 | 0.016 | 0.150 | |
PD310IA | 28,524 | 28,524 | 0.122 | 0.013 | 0.119 | |
PD310IA_2 | 62,000 | 33,476 | 0.185 | 0.019 | 0.173 | |
City | PD496HG | 213,000 | 30,000 | 0.211 | 0.070 | 0.190 |
PD496HG_2 | 242,000 | 29,000 | 0.207 | 0.047 | 0.179 | |
PD724HF | 185,000 | 26,000 | 0.249 | 0.150 | 0.215 | |
PD724HF_2 | 220,740 | 35,740 | 0.330 | 0.227 | 0.267 | |
PD587HG | 220,900 | 31,900 | 0.212 | 0.071 | 0.195 | |
PD587HG_2 | 248,000 | 27,100 | 0.215 | 0.054 | 0.191 | |
PD654GN | 295,000 | 34,000 | 0.228 | 0.087 | 0.202 | |
PD654GN_2 | 354,777 | 30,777 | 0.214 | 0.088 | 0.196 | |
PD382GY | 252,200 | 18,275 | 0.171 | 0.049 | 0.146 | |
PD382GY_2 | 285,000 | 35,000 | 0.318 | 0.226 | 0.254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołębiowski, W.; Wolak, A.; Šarkan, B. Engine Oil Degradation in the Real-World Bus Fleet Test Based on Two Consecutive Operational Intervals. Lubricants 2024, 12, 101. https://doi.org/10.3390/lubricants12030101
Gołębiowski W, Wolak A, Šarkan B. Engine Oil Degradation in the Real-World Bus Fleet Test Based on Two Consecutive Operational Intervals. Lubricants. 2024; 12(3):101. https://doi.org/10.3390/lubricants12030101
Chicago/Turabian StyleGołębiowski, Wojciech, Artur Wolak, and Branislav Šarkan. 2024. "Engine Oil Degradation in the Real-World Bus Fleet Test Based on Two Consecutive Operational Intervals" Lubricants 12, no. 3: 101. https://doi.org/10.3390/lubricants12030101
APA StyleGołębiowski, W., Wolak, A., & Šarkan, B. (2024). Engine Oil Degradation in the Real-World Bus Fleet Test Based on Two Consecutive Operational Intervals. Lubricants, 12(3), 101. https://doi.org/10.3390/lubricants12030101