Effect of Nano-CuO and 2-Mercaptobenzothiazole on the Tribological Properties of Ultra-High Molecular Weight Polyethylene
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, X.; Li, Y.; He, G. Fabrication of Self-Lubricating Porous UHMWPE with Excellent Mechanical Properties and Friction Performance via Rotary Sintering. Polymers 2020, 12, 1335. [Google Scholar] [CrossRef]
- Abdul Samad, M. Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review. Polymers 2021, 13, 608. [Google Scholar] [CrossRef]
- Tian, Y.; Guo, L. Adhesion Performance of UHMWPE Fiber Treated with Polyethylene Wax Grafted Methyl Methacrylate Alone or in Conjunction with Silane Coupling Agent. J. Adhes. Sci. Technol. 2021, 35, 1219–1235. [Google Scholar] [CrossRef]
- Zec, J.; Tomić, N.Z.; Zrilić, M.; Lević, S.; Marinković, A.; Heinemann, R.J. Optimization of Al2O3 Particle Modification and UHMWPE Fiber Oxidation of EVA Based Hybrid Composites: Compatibility, Morphological and Mechanical Properties. Compos. Part B Eng. 2018, 153, 36–48. [Google Scholar] [CrossRef]
- Danilova, S.N.; Ivanov, A.N.; Spiridonov, A.M.; Abakunova, E.V.; Okhlopkova, A.A. Polymer-Silicate Composites Based on Ultra-High Molecular Weight Polyethylene and Organo-Modified Montmorillonite. Mater. Today Commun. 2023, 37, 107408. [Google Scholar] [CrossRef]
- Shelly, D.; Lee, S.-Y.; Park, S.-J. Compatibilization of Ultra-High Molecular Weight Polyethylene (UHMWPE) Fibers and Their Composites for Superior Mechanical Performance: A Concise Review. Compos. Part B Eng. 2024, 275, 111294. [Google Scholar] [CrossRef]
- Gürgen, S.; Sert, A.; Kuşhan, M.C. An Investigation on Wear Behavior of UHMWPE /Carbide Composites at Elevated Temperatures. J Appl. Polym. Sci 2021, 138, 50245. [Google Scholar] [CrossRef]
- Ramesh, M.; Deepa, C.; Rajeshkumar, L.; Tamil Selvan, M.; Balaji, D. Influence of Fiber Surface Treatment on the Tribological Properties of Calotropis gigantea Plant Fiber Reinforced Polymer Composites. Polym. Compos. 2021, 42, 4308–4317. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Mahmood, H.; Pegoretti, A. Recent Advances in Fiber/Matrix Interphase Engineering for Polymer Composites. Prog. Mater. Sci. 2015, 73, 1–43. [Google Scholar] [CrossRef]
- Feng, J.; Venna, S.R.; Hopkinson, D.P. Interactions at the Interface of Polymer Matrix-Filler Particle Composites. Polymer 2016, 103, 189–195. [Google Scholar] [CrossRef]
- Wang, S.; Ma, J.; Feng, X.; Cheng, J.; Ma, X.; Zhao, Y.; Chen, L. An Effective Surface Modification of UHMWPE Fiber for Improving the Interfacial Adhesion of Epoxy Resin Composites. Polym. Compos. 2020, 41, 1614–1623. [Google Scholar] [CrossRef]
- Borisova, R.V.; Nikiforov, L.A.; Spiridonov, A.M.; Okhlopkova, T.A.; Okhlopkova, A.A.; Koryakina, N.S. The Influence of Brominated UHMWPE on the Tribological Characteristics and Wear of Polymeric Nanocomposites Based on UHMWPE and Nanoparticles. J. Frict. Wear 2019, 40, 27–32. [Google Scholar] [CrossRef]
- Panin, S.V.; Kornienko, L.A.; Huang, Q.; Buslovich, D.G.; Bochkareva, S.A.; Alexenko, V.O.; Panov, I.L.; Berto, F. Effect of Adhesion on Mechanical and Tribological Properties of Glass Fiber Composites, Based on Ultra-High Molecular Weight Polyethylene Powders with Various Initial Particle Sizes. Materials 2020, 13, 1602. [Google Scholar] [CrossRef]
- Bhusari, S.A.; Sharma, V.; Bose, S.; Basu, B. HDPE/UHMWPE Hybrid Nanocomposites with Surface Functionalized Graphene Oxide towards Improved Strength and Cytocompatibility. J. R. Soc. Interface 2019, 16, 20180273. [Google Scholar] [CrossRef]
- Azam, M.U.; Samad, M.A. UHMWPE Hybrid Nanocomposite Coating Reinforced with Nanoclay and Carbon Nanotubes for Tribological Applications under Water with/without Abrasives. Tribol. Int. 2018, 124, 145–155. [Google Scholar] [CrossRef]
- Aparna, A.; Sethulekshmi, A.S.; Jayan, J.S.; Saritha, A.; Joseph, K. Recent Advances in Boron Nitride Based Hybrid Polymer Nanocomposites. Macromol. Mater. Eng. 2021, 306, 2100429. [Google Scholar] [CrossRef]
- Praveenkumara, J.; Madhu, P.; Yashas Gowda, T.G.; Sanjay, M.R.; Siengchin, S. A Comprehensive Review on the Effect of Synthetic Filler Materials on Fiber-Reinforced Hybrid Polymer Composites. J. Text. Inst. 2022, 113, 1231–1239. [Google Scholar] [CrossRef]
- Cazan, C.; Enesca, A.; Andronic, L. Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites. Polymers 2021, 13, 2017. [Google Scholar] [CrossRef]
- Asnida, M.; Hisham, S.; Awang, N.W.; Amirruddin, A.K.; Noor, M.M.; Kadirgama, K.; Ramasamy, D.; Najafi, G.; Tarlochan, F. Copper (II) Oxide Nanoparticles as Additve in Engine Oil to Increase the Durability of Piston-Liner Contact. Fuel 2018, 212, 656–667. [Google Scholar] [CrossRef]
- Jatti, V.S.; Singh, T.P. Copper Oxide Nano-Particles as Friction-Reduction and Anti-Wear Additives in Lubricating Oil. J. Mech. Sci. Technol. 2015, 29, 793–798. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Guo, L.; Tong, J. Influence of Polyphenyl Ester and Nanosized Copper Filler on the Tribological Properties of Carbon Fibre–Reinforced Ultra-High-Molecular-Weight Polyethylene Composites. J. Thermoplast. Compos. Mater. 2018, 31, 1483–1496. [Google Scholar] [CrossRef]
- Li, W.; Feng, M.; Liu, X.; Yang, J. Improvement of Copper Oxides-Coated Ultra-High Molecular Weight Polyethylene Fibers Reinforced Rigid Polyurethane Composites in Strength and Toughness. Fibers Polym. 2021, 22, 1883–1888. [Google Scholar] [CrossRef]
- Shiv, J.K.; Kumar, K.; Jayapalan, S. Recent Advances in Polymer Using Metal Oxides Nanocomposite and Its Hybrid Fillers for Tribological Application. Adv. Mater. Process. Technol. 2023, 1–12. [Google Scholar] [CrossRef]
- Cao, Z.; Shi, G.; Yan, X.; Wang, Q. In Situ Fabrication of CuO/UHMWPE Nanocomposites and Their Tribological Performance. J Appl. Polym. Sci 2019, 136, 47925. [Google Scholar] [CrossRef]
- Ushakov, A.V.; Karpov, I.V.; Fedorov, L.U.; Lepeshev, A.A. Mechanical and Tribological Properties of Complex-Modified Material Based on Ultra High Molecular Weight Polyethylene and CuO. J. Frict. Wear 2014, 35, 7–11. [Google Scholar] [CrossRef]
- Skotnicka, A.; Kabatc-Borcz, J. Design, Synthesis, and Spectral Properties of Novel 2-Mercaptobenzothiazole Derivatives. Materials 2024, 17, 246. [Google Scholar] [CrossRef] [PubMed]
- Danilova, S.N.; Okhlopkova, A.A.; Yarusova, S.B.; Dyakonov, A.A.; Gordienko, P.S.; Papynov, E.K.; Shichalin, O.O.; Buravlev, I.Y.; Vasilev, A.P.; Zhevtun, I.G.; et al. Study on the Impact of a Combination of Synthetic Wollastonite and 2-Mercaptobenzothiazole-Based Fillers on UHMWPE Polymeric Matrix. J. Compos. Sci. 2023, 7, 431. [Google Scholar] [CrossRef]
- GOST 739-74; 2-Mercaptobenzothiazole. Specifications, Standards Publishing House: Moscow, Russia, 2000; 11p.
- Li, J.; Guo, Z.; Hua, M.; Qin, X.; Wen, S. Tribological Characteristics of UHMWPE Composite and Relationship with Its Compressive Behavior. SCI CHINA SER G 2004, 47, 79–87. [Google Scholar] [CrossRef]
- Padhan, M.; Marathe, U.; Bijwe, J. A Comparative Assessment of Nano and Microparticles of Carbides for Performance Augmentation of UHMWPE in Abrasive and Erosive Wear Modes. Wear 2023, 514–515, 204568. [Google Scholar] [CrossRef]
- Reddy, S.K.; Kumar, S.; Varadarajan, K.M.; Marpu, P.R.; Gupta, T.K.; Choosri, M. Strain and Damage-Sensing Performance of Biocompatible Smart CNT/UHMWPE Nanocomposites. Mater. Sci. Eng. C 2018, 92, 957–968. [Google Scholar] [CrossRef]
- Diabb Zavala, J.M.; Leija Gutiérrez, H.M.; Segura-Cárdenas, E.; Mamidi, N.; Morales-Avalos, R.; Villela-Castrejón, J.; Elías-Zúñiga, A. Manufacture and Mechanical Properties of Knee Implants Using SWCNTs/UHMWPE Composites. J. Mech. Behav. Biomed. Mater. 2021, 120, 104554. [Google Scholar] [CrossRef]
- Ni, Z.; Pang, W.; Chen, G.; Lu, P.; Qian, S. The Influence of Irradiation on Thermal and Mechanical Properties of UHMWPE/GO Nanocomposites. Russ. J. Appl. Chem. 2017, 90, 1876–1882. [Google Scholar] [CrossRef]
- Mirsalehi, S.A.; Khavandi, A.; Mirdamadi, S.; Naimi-Jamal, M.R.; Roshanfar, S.; Fatehi-Peykani, H. Synthesis of Nano-HA and the Effects on the Mechanical Properties of HA/UHMWPE Nanocomposites. Adv. Mater. Process. Technol. 2016, 2, 209–219. [Google Scholar] [CrossRef]
- Amurin, L.G.; Felisberto, M.D.; Ferreira, F.L.Q.; Soraes, P.H.V.; Oliveira, P.N.; Santos, B.F.; Valeriano, J.C.S.; De Miranda, D.C.; Silva, G.G. Multifunctionality in Ultra High Molecular Weight Polyethylene Nanocomposites with Reduced Graphene Oxide: Hardness, Impact and Tribological Properties. Polymer 2022, 240, 124475. [Google Scholar] [CrossRef]
- Bucknall, C.; Altstädt, V.; Auhl, D.; Buckley, P.; Dijkstra, D.; Galeski, A.; Gögelein, C.; Handge, U.A.; He, J.; Liu, C.-Y.; et al. Structure, Processing and Performance of Ultra-High Molecular Weight Polyethylene (IUPAC Technical Report). Part 2: Crystallinity and Supra Molecular Structure. Pure Appl. Chem. 2020, 92, 1485–1501. [Google Scholar] [CrossRef]
- Gürgen, S. Wear Behavior of UHMWPE Composites under Oxidative Effect. Polym. Degrad. Stab. 2022, 199, 109912. [Google Scholar] [CrossRef]
- Shi, W.; Dong, H.; Bell, T. Tribological Behaviour and Microscopic Wear Mechanisms of UHMWPE Sliding against Thermal Oxidation-Treated Ti6Al4V. Mater. Sci. Eng. A 2000, 291, 27–36. [Google Scholar] [CrossRef]
- Struchkova, T.S.; Vasilev, A.P.; Okhlopkova, A.A.; Danilova, S.N.; Alekseev, A.G. Mechanical and Tribological Properties of Polytetrafluoroethylene Composites Modified by Carbon Fibers and Zeolite. Lubricants 2021, 10, 4. [Google Scholar] [CrossRef]
- Cai, T.; Zhan, S.; Yang, T.; Jia, D.; Tu, J.; Li, Y.; Li, J.; Duan, H. Influence Mechanism of Organic-Modified α-Zirconium Phosphate on Tribological Properties of UHMWPE. Wear 2023, 512–513, 204548. [Google Scholar] [CrossRef]
- Rai, A.K.; Singh, R.; Singh, K.N.; Singh, V.B. FTIR, Raman Spectra and Ab Initio Calculations of 2-Mercaptobenzothiazole. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 63, 483–490. [Google Scholar] [CrossRef]
- Li, X.-H.; Tang, Z.-X.; Zhang, X.-Z. Molecular Structure, IR Spectra of 2-Mercaptobenzothiazole and 2-Mercaptobenzoxazole by Density Functional Theory and Ab Initio Hartree–Fock Calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 74, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Catauro, M.; Scolaro, C.; Dal Poggetto, G.; Pacifico, S.; Visco, A. Wear Resistant Nanocomposites Based on Biomedical Grade UHMWPE Paraffin Oil and Carbon Nano-Filler: Preliminary Biocompatibility and Antibacterial Activity Investigation. Polymers 2020, 12, 978. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Wu, M.; Ni, Z.; Huang, G. Oxidative Degradation Behavior of Irradiated GO/UHMWPE Nanocomposites Immersed in Simulated Body Fluid. Polym. Bull. 2021, 78, 5153–5164. [Google Scholar] [CrossRef]
- Okhlopkova, A.A.; Danilova, S.N.; Dyakonov, A.A.; Vasilev, A.P.; Tuisov, A.G.; Kychkin, A.K. Tribological Properties of Composites Based on a UHMWPE Modified Borpolymer. J. Frict. Wear 2022, 43, 27–34. [Google Scholar] [CrossRef]
- Kumar, A.; Bijwe, J.; Sharma, S. Hard Metal Nitrides: Role in Enhancing the Abrasive Wear Resistance of UHMWPE. Wear 2017, 378–379, 35–42. [Google Scholar] [CrossRef]
- Sharma, S.; Bijwe, J.; Panier, S. Assessment of Potential of Nano and Micro-Sized Boron Carbide Particles to Enhance the Abrasive Wear Resistance of UHMWPE. Compos. Part B Eng. 2016, 99, 312–320. [Google Scholar] [CrossRef]
Sample | Compressive Stress, MPa | Shore D Hardness | Density, g/cm3 |
---|---|---|---|
Initial UHMWPE | 17 ± 1 | 62 ± 1 | 0.93 |
UHMWPE + 0.5 wt.% 1CuO/1MBT | 21 ± 1 | 65 ± 1 | 0.94 |
UHMWPE + 1 wt.% 1CuO/1MBT | 22 ± 1 | 66 ± 1 | 0.94 |
UHMWPE + 2 wt.% 1CuO/1MBT | 22 ± 1 | 65 ± 1 | 0.95 |
UHMWPE + 0.5 wt.% 2CuO/1MBT | 21 ± 1 | 66 ± 1 | 0.93 |
UHMWPE + 1 wt.% 2CuO/1MBT | 22 ± 1 | 66 ± 1 | 0.94 |
UHMWPE + 2 wt.% 2CuO/1MBT | 23 ± 1 | 65 ± 1 | 0.95 |
Sample | Ra, μm before Friction Test | Ra, μm after Friction Test |
---|---|---|
Initial UHMWPE | 0.33 | 0.29 |
UHMWPE + 0.5 wt.% 1CuO/1MBT | 0.35 | 0.31 |
UHMWPE + 1 wt.% 1CuO/1MBT | 0.39 | 0.34 |
UHMWPE + 2 wt.% 1CuO/1MBT | 0.46 | 0.35 |
UHMWPE + 0.5 wt.% 2CuO/1MBT | 0.36 | 0.31 |
UHMWPE + 1 wt.% 2CuO/1MBT | 0.38 | 0.32 |
UHMWPE + 2 wt.% 2CuO/1MBT | 0.45 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilev, A.P.; Dyakonov, A.A.; Danilova, S.N.; Makarov, I.S.; Okoneshnikova, A.V.; Okhlopkova, A.A. Effect of Nano-CuO and 2-Mercaptobenzothiazole on the Tribological Properties of Ultra-High Molecular Weight Polyethylene. Lubricants 2024, 12, 174. https://doi.org/10.3390/lubricants12050174
Vasilev AP, Dyakonov AA, Danilova SN, Makarov IS, Okoneshnikova AV, Okhlopkova AA. Effect of Nano-CuO and 2-Mercaptobenzothiazole on the Tribological Properties of Ultra-High Molecular Weight Polyethylene. Lubricants. 2024; 12(5):174. https://doi.org/10.3390/lubricants12050174
Chicago/Turabian StyleVasilev, Andrey P., Afanasiy A. Dyakonov, Sakhayana N. Danilova, Igor S. Makarov, Anastasia V. Okoneshnikova, and Aitalina A. Okhlopkova. 2024. "Effect of Nano-CuO and 2-Mercaptobenzothiazole on the Tribological Properties of Ultra-High Molecular Weight Polyethylene" Lubricants 12, no. 5: 174. https://doi.org/10.3390/lubricants12050174
APA StyleVasilev, A. P., Dyakonov, A. A., Danilova, S. N., Makarov, I. S., Okoneshnikova, A. V., & Okhlopkova, A. A. (2024). Effect of Nano-CuO and 2-Mercaptobenzothiazole on the Tribological Properties of Ultra-High Molecular Weight Polyethylene. Lubricants, 12(5), 174. https://doi.org/10.3390/lubricants12050174