Tribological and Chemical–Physical Behavior of a Novel Palm Grease Blended with Zinc Oxide and Reduced Graphene Oxide Nano-Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanomaterials Characterization
2.2. Palm Grease Synthesis
2.3. Palm Grease Consistency Test
2.4. Roll Stability
2.5. Churned Grease-Oil Release (CGOR) Test
2.6. Copper Corrosion Test
2.7. Dropping Point Test
2.8. Rheological Test
2.9. Pour Point Test
2.10. Oxidation Stability Test
2.11. Palm Grease Tribological Tests
3. Results and Discussion
3.1. Characterization Results
3.2. Chemical–Physical Characterization Results
3.3. Tribological Properties Results
4. Conclusions
- Penetration test results of synthesized palm grease without additives showed a rigidity corresponding to NLGI grade 3; therefore, it is suitable for the lubrication of rotating machinery components. The roll stability test confirmed the penetration test results, ensuring the superiority of palm grease over lithium grease. The existence of stearic acids in palm oil is responsible for creating closed grease structures with long entangled fibers, enhancing its stability.
- The copper corrosion test showed that palm grease with and without additives indicates superb protection of mating surfaces against corrosion and absence of harmful sulfur in palm oil.
- Palm grease showed higher dropping point (209 °C) than that of lithium grease (160 °C), which indicates better thermal stability and coherency.
- Kinematic viscosity values at 100 °C of palm grease samples were higher than those of lithium grease by 40%. The addition of ZnO and rGO nano-additives at different weight percentages enhanced the kinematic viscosity at 100 °C up to 25%.
- ZnO is shown to play a major role in reducing the oxidation tendency of palm grease with a total increase in oxidation time of 60%. It also reduced the pour point of palm grease from 9 °C to 6 °C, which enables palm grease to be used at lower-temperature conditions.
- Adding rGO and ZnO at increasing ratios significantly enhanced the load-carrying capacity up to 60%, as compared to palm grease without additives. The addition of ZnO and rGO contributed to reduction in the COF from 0.1 to 0.07.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, W.; Lai, K.H.; Liu, C.; Wei, F.; Ma, M.; Shun, J.; Jiang, Z.; Lv, L. Promoting sustainability of manufacturing industry through the lean energy-saving and emission-reduction strategy. Sci. Total Environ. 2019, 665, 23–32. [Google Scholar] [CrossRef]
- Ingarao, G.; Ambrogio, G.; Gagliardi, F.; Di Lorenzo, R. A sustainability point of view on sheet metal forming operations: Material wasting and energy consumption in incremental forming and stamping processes. J. Clean. Prod. 2012, 29–30, 255–268. [Google Scholar] [CrossRef]
- International Energy Agency. Energy System—Industry. Available online: https://www.iea.org/energy-system/industry (accessed on 9 April 2024).
- International Energy Agency. Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach. Available online: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach (accessed on 9 April 2024).
- Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Sustainable Development, and Efforts to Eradicate Poverty 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 18 April 2024).
- United Nations Framework Convention on Climate Change, Paris Agreement. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 11 April 2024).
- Yang, J.; Yu, Y.; Ma, T.; Zhang, C.; Wang, Q. Evolution of energy and metal demand driven by industrial revolutions and its trend analysis. Chin. J. Popul. Resour. Environ. 2021, 19, 256–264. [Google Scholar] [CrossRef]
- Denkena, B.; Abele, E.; Brecher, C.; Dittrich, M.A.; Kara, S.; Mori, M. Energy efficient machine tools. CIRP Ann. 2020, 69, 646–667. [Google Scholar] [CrossRef]
- Taylor, R.I.; Dixon, R.T.; Wayne, F.D.; Gunsel, S. Lubricants & Energy Efficiency: Life-Cycle Analysis. In Tribology and Interface Engineering Series; Dowson, D., Priest, M., Dalmaz, G., Lubrecht, A.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 48, pp. 565–572. [Google Scholar] [CrossRef]
- Rajabi, H.; Mosleh, M.H.; Mandal, P.; Lea-Langton, A.; Sedighi, M. Emissions of volatile organic compounds from crude oil processing—Global emission inventory and environmental release. Sci. Total Environ. 2020, 727, 138654. [Google Scholar] [CrossRef]
- Perez, J.M.; Rudnick, L.R.; Erhan, S.Z. Chapter 22 Natural Oils as Lubricants. In Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, 2nd ed.; Rudnick, L.R., Ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 375–382. [Google Scholar]
- Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.S.; Harith, M.H. A review on bio-based lubricants and their applications. J. Clean. Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Panchal, T.M.; Patel, A.; Chauhan, D.D.; Thomas, M.; Patel, J.V. A methodological review on bio-lubricants from vegetable oil based resources. Renew. Sustain. Energy Rev. 2017, 70, 65–70. [Google Scholar] [CrossRef]
- Reeves, C.J.; Siddaiah, A.; Menezes, P.L. A Review on the Science and Technology of Natural and Synthetic Biolubricants. J. Bio-Tribo-Corros. 2017, 3, 11. [Google Scholar] [CrossRef]
- IEA. The Oil and Gas Industry in Energy Transitions, Insights from IEA. 2020. Available online: https://www.iea.org/reports/the-oil-and-gas-industry-in-energy-transitions (accessed on 26 April 2024).
- Ramaraj, R.; Unpaprom, Y.; Whangchai, N.; Dussadee, N. Culture of Macroalgae Spirogyra ellipsospora for Long-Term Experiments, Stock Maintenance and Biogas Production. Life Sci. 2015, 1, 38–45. [Google Scholar]
- Bolina, I.C.A.; Gomes, R.A.B.; Mendes, A.A. Biolubricant Production from Several Oleaginous Feedstocks Using Lipases as Catalysts: Current Scenario and Future Perspectives. BioEnergy Res. 2021, 14, 1039–1057. [Google Scholar] [CrossRef]
- Barbera, E.; Hirayama, K.; Maglinao, R.L.; Davis, R.W.; Kumar, S. Recent developments in synthesizing biolubricants—A review. Biomass Conv. Bioref. 2024, 14, 2867–2887. [Google Scholar] [CrossRef]
- Duckstein, A.; Rittinghaus, T.; Pape, F.; Poll, G.; Glasmacher, B. Untersuchung des Einsatzes von Alginat als umweltverträgliches Schmierstoffsubstitut. In Proceedings of the 18th Arnold Tross Colloquium, Hamburg, Germany, 9 June 2023. [Google Scholar]
- Ostrikov, A.N.; Kleymenova, N.L.; Bolgova, I.N.; Kopylov, M.V.; Lobacheva, N.N. The study of edible vegetable oils rheological properties. In Proceedings of the International Conference on Current Issues of Breeding, Technology and Processing of Agricultural Crops, and Environment (CIBTA-II-2023), Kayseri, Turkey, 11–13 October 2023. [Google Scholar] [CrossRef]
- Muhammad, C.; Usman, Z.; Agada, F. Biodiesel production from Ceiba pentandra seed oil using CaO derived from snail shell as catalyst. Pet. Sci. Eng. 2018, 2, 7–16. [Google Scholar] [CrossRef]
- Nagendramma, P.; Kaul, S. Development of ecofriendly/biodegradable lubricants: An overview. Renew. Sustain. Energy Rev. 2012, 16, 764–774. [Google Scholar] [CrossRef]
- Salimon, J.; Abdullah, B.M.; Yusop, R.M.; Salih, N. Synthesis, reactivity and application studies for different biolubricants. Chem. Cent. J. 2014, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.S.; Nair, K.P.; Rajendrakumar, P.K. Evaluation of physicochemical, thermal and tribological properties of sesame oil (Sesamum indicum L.): A potential agricultural crop base stock for eco-friendly industrial lubricants. Int. J. Agric. Resour. Gov. Ecol. 2017, 13, 77–90. [Google Scholar] [CrossRef]
- Oti-Boakye, A.; Acheampong, A.; Ohene, G.N.; Agyei, A.C.; Agbosu, A.A. Comparative assessment of some physico-chemical properties of seed oils of Parkia biglobosa and Monodora myristica with some commercial oils. Afr. J. Food Sci. 2018, 12, 1–5. [Google Scholar] [CrossRef]
- Chua, W.; Stachowiak, G.W. The Growth of Thin Lubricating Films of Plant Oils. Tribol. Lett. 2011, 41, 451–462. [Google Scholar] [CrossRef]
- Woma, T.Y.; Lawal, S.A.; Abdulrahman, A.S.; Olutoye, M.A.; Ojapah, M.M. Vegetable Oil Based Lubricants: Challenges and Prospects. Tribol. Online 2019, 14, 60–70. [Google Scholar] [CrossRef]
- Dube, N.N.; ElKady, M.; Noby, H.; Nassef, M.G.A. Developing a sustainable grease from jojoba oil with plant waste based nanoadditives for enhancement of rolling bearing performance. Sci. Rep. 2024, 14, 539. [Google Scholar] [CrossRef]
- Masudi, A.; Muraza, O. Vegetable oil to biolubricants: Review on advanced porous catalysts. Energy Fuels 2018, 32, 10295–10310. [Google Scholar] [CrossRef]
- Masjuki, H.; Maleque, M.; Kubo, A.; Nonaka, T. Palm oil and mineral oil based lubricants—Their tribological and emission performance. Tribol. Int. 1999, 32, 305–314. [Google Scholar] [CrossRef]
- Sukirno, R.F.; Bismo, S.; Nasikin, M. Biogrease based on palm oil and lithium soap thickener: Evaluation of antiwear property. World Appl. Sci. J. 2009, 6, 401–407. [Google Scholar]
- Aiman, Y.; Syahrullail, S. Development of palm oil blended with semi synthetic oil as a lubricant using four-ball tribotester. J. Tribol. 2017, 13, 1–20. [Google Scholar]
- Hassan, M.; Ani, F.N.; Syahrullail, S. Tribological performance of refined, bleached and deodorised palm olein blends bio-lubricants. J. Oil Palm Res. 2016, 28, 510–519. [Google Scholar] [CrossRef]
- Syahrullail, S.; Wira, J.Y.; Wan Nik, W.; Fawwaz, W. Friction characteristics of RBD palm olein using four-ball tribotester. Appl. Mech. Mater. 2013, 315, 936–940. [Google Scholar] [CrossRef]
- Gulzar, M.M.; Masjuki, H.H.; Varman, M.; Kalam, M.A.; Mufti, R.A.; Zulkifli, N.W.M.; Yunus, R.; Zahid, R. Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribol. Int. 2015, 88, 271–279. [Google Scholar] [CrossRef]
- Muhammad, A.I.; Mohd Yusof, N.F.; Ripin, Z.M. The tribological performance analysis of palm olein-based grease lubricants containing copper nanoparticle additive. Proc. Inst. Mech. Eng. J. Eng. Tribol. 2023, 237, 2162–2177. [Google Scholar] [CrossRef]
- Azman, S.S.N.; Zulkifli, N.W.M.; Masjuki, H.; Gulzar, M.; Zahid, R. Study of tribological properties of lubricating oil blend added with graphene nanoplatelets. J. Mater. Res. 2016, 31, 1932–1938. [Google Scholar] [CrossRef]
- Azman, N.F.; Samion, S.; Sot, M.N.H.M. Investigation of tribological properties of CuO/palm oil nanolubricant using pin-on-disc tribotester. Green Mater. 2018, 6, 30–37. [Google Scholar] [CrossRef]
- Deepika. Nanotechnology implications for high performance lubricants. SN Appl. Sci. 2020, 2, 1128. [Google Scholar] [CrossRef]
- Qu, J.; Luo, H.; Chi, M.; Ma, C.; Blau, P.J.; Dai, S.; Viola, M.B. Comparison of an oil-miscible ionic liquid and ZDDP as a lubricant anti-wear additive. Tribol. Int. 2014, 71, 88–97. [Google Scholar] [CrossRef]
- Duan, L.; Li, J.; Duan, H. Nanomaterials for lubricating oil application: A review. Friction 2023, 11, 647–684. [Google Scholar] [CrossRef]
- Abouelkasem, Z.A.; Nassef, G.A.; Abdelnaeem, M.; Nassef, M.G.A. Enhancing the Elastohydrodynamic Lubrication and Vibration Behavior of Rolling Bearings Using a Hybrid Bio-Grease Blended with Activated Carbon Nanoparticles. Tribol. Lett. 2024, 72, 46. [Google Scholar] [CrossRef]
- Jin, B.; Chen, G.; He, Y.; Zhang, C.; Luo, J. Lubrication properties of graphene under harsh working conditions. Mater. Today Adv. 2023, 18, 100369. [Google Scholar] [CrossRef]
- Dhanola, A.; Gajrani, K.K. Novel Insights into Graphene-Based Sustainable Liquid Lubricant Additives: A Comprehensive Review. J. Mol. Liq. 2023, 386, 122523. [Google Scholar] [CrossRef]
- Pownraj, C.; Arasu, A.V. A Comprehensive Investigation on Wear and Thermo-Physical Properties of Bio-char/SAE20W40 Nanolubricant. Biomass Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- Birleanu, C.; Pustan, M.; Cioaza, M.; Molea, A.; Popa, F.; Contiu, G. Effect of TiO2 Nanoparticles on the Tribological Properties of Lubricating Oil: An Experimental Investigation. Sci. Rep. 2022, 12, 5201. [Google Scholar] [CrossRef] [PubMed]
- Sankar, E.; Duraivelu, K. The Effect of SiO2-Al2O3-TiO2 Nanoparticle Additives on Lubrication Performance: Evaluation of Wear and Coefficient of Friction. Mater. Today Proc. 2022, 68 Pt 6, 2387–2392. [Google Scholar] [CrossRef]
- Bhaumik, S.; Maggirwar, R.; Datta, S.; Pathak, S. Analyses of anti-wear and extreme pressure properties of castor oil with zinc oxide nano friction modifiers. Appl. Surf. Sci. 2018, 449, 277–286. [Google Scholar] [CrossRef]
- Mousavi, S.B.; Heris, S.Z.; Estellé, P. Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Sci. Rep. 2020, 10, 5813. [Google Scholar] [CrossRef]
- Hernaiz, M.; Elexpe, I.; Aranzabe, E.; Fernández, B.; Fernández, X.; Fernández, S.; Cortada-García, M.; Aguayo, A.T. Study of the Effect of ZnO Functionalization on the Performance of a Fully Formulated Engine Oil. Nanomaterials 2023, 13, 2540. [Google Scholar] [CrossRef] [PubMed]
- Rajak, U.; Reddy, N.V.; Ağbulut, Ü.; Sarıdemir, S.; Afzal, A.; Verma, T.N. Modifying diesel fuel with nanoparticles of zinc oxide to investigate its influences on engine behaviors. Fuel 2023, 345, 128196. [Google Scholar] [CrossRef]
- Xie, M.; Cheng, J.; Huo, C.; Zhao, G. Improving the lubricity of a bio-lubricating grease with the multilayer graphene additive. Tribol. Int. 2020, 150, 106386. [Google Scholar] [CrossRef]
- Roselina, N.N.; Mohamad, N.S.; Kasolang, S. Evaluation of TiO2 nanoparticles as viscosity modifier in palm oil bio-lubricant. IOP Conf. Ser. Mater. Sci. Eng. 2020, 83, 12032. [Google Scholar] [CrossRef]
- Tan, K.-H.; Awala, H.; Mukti, R.R.; Wong, K.L.; Ling, T.C.; Mintova, S.; Ng, E.P. Zeolite nanoparticles as effective antioxidant additive for the preservation of palm oil-based lubricant. J. Taiwan Inst. Chem. Eng. 2016, 58, 565–571. [Google Scholar] [CrossRef]
- Tan, K.-H.; Cham, H.-Y.; Awala, H.; Ling, T.C.; Mukti, R.R.; Wong, K.-L.; Mintova, S.; Ng, E.-P. Effect of Extra-Framework Cations of LTL Nanozeolites to Inhibit Oil Oxidation. Nanoscale Res. Lett. 2015, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.-H.; Awala, H.; Mukti, R.R.; Wong, K.-L.; Rigaud, B.; Ling, T.C.; Aleksandrov, H.A.; Koleva, I.Z.; Vayssilov, G.N.; Mintova, S.; et al. Inhibition of palm oil oxidation by zeolite nanocrystals. J. Agric. Food Chem. 2015, 63, 4655–4663. [Google Scholar] [CrossRef] [PubMed]
- Sholiha, Z.H.; Jatisukamto, G. Characteristics biolubricant enriched with nanoparticle additives: A review. J. Mech. Eng. Sci. Technol. 2020, 4, 91–100. [Google Scholar] [CrossRef]
- Hasnul, M.H.; Mohd Zulkifli, N.W.; Hassan, M.; Zulkifli, S.A.; Mohd Yusoff, M.N.A.; Zakaria, M.Z. Synergistic behavior of graphene and ionic liquid as bio-based lubricant additive. Lubricants 2021, 9, 46. [Google Scholar] [CrossRef]
- Kumar, P.; Wani, M. Synthesis and tribological properties of graphene: A review. J. Tribol. 2017, 13, 36–71. [Google Scholar]
- Jones, E.F. The manufacture and properties of lubricating greases. Tribology 1968, 1, 209–213. [Google Scholar] [CrossRef]
- Pape, F.; Poll, G. Investigations on Graphene Platelets as Dry Lubricant and as Grease Additive for Sliding Contacts and Rolling Bearing Application. Lubricants 2020, 8, 3. [Google Scholar] [CrossRef]
- Pape, F.; Poll, G. Graphenbasierte Schmierung von Wälzlagern. Tribol. Schmier. 2019, 66, 111346. [Google Scholar] [CrossRef]
- Sukirno; Ludi, S.; Bismo, M.; Nasikin. Formulation and Performance of Palm-grease Using Calcium Soap. CIGR E-J. 2010, XII. [Google Scholar]
- Abdulbari, H.A.; Zuhan, N. Grease Formulation from Palm Oil Industry Wastes. Waste Biomass Valorization 2018, 9, 2447–2457. [Google Scholar] [CrossRef]
- Xue, W.; Zhao, Z.; Wang, P.; Jin, Z.; Xu, X.; Zhou, X. Performance Study of Zinc Oxide Nanoparticles for Lubricant Oil. Adv. Mater. Res. 2015, 1118, 195–204. [Google Scholar] [CrossRef]
- Lugt, P.M. Lubrication Mechanisms, Grease Lubrication in Rolling Bearings; John and Wiley Sons, Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Patel, J.; Kiani, A. Tribological Capabilities of Graphene and Titanium Dioxide Nano Additives in Solid and Liquid Base Lubricants. Appl. Sci. 2019, 9, 1629. [Google Scholar] [CrossRef]
- Cao, D.; Gong, S.; Shu, X.; Zhu, D.; Liang, S. Preparation of ZnO Nanoparticles with High Dispersibility Based on Oriented Attachment (OA) Process. Nanoscale Res. Lett. 2019, 14, 210. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.C.; Renjanadevi, B. Preparation of Zinc Oxide Nanoparticles and its Characterization Using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Procedia Technol. 2016, 24, 761–766. [Google Scholar] [CrossRef]
- Talam, S.; Karumuri, S.R.; Gunnam, N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int. Sch. Res. Not. 2012, 2012, 372505. [Google Scholar] [CrossRef]
- Gavhane, R.S.; Kate, A.M.; Pawar, A.; Safaei, M.R.; Soudagar, M.E.M.; Mujtaba Abbas, M.; Muhammad Ali, H.; Banapurmath, N.R.; Goodarzi, M.; Badruddin, I.A.; et al. Effect of Zinc Oxide Nano-Additives and Soybean Biodiesel at Varying Loads and Compression Ratios on VCR Diesel Engine Characteristics. Symmetry 2020, 12, 1042. [Google Scholar] [CrossRef]
- Handore, K.; Bhavsar, S.; Horne, A.; Chhattise, P.; Mohite, K.; Ambekar, J.; Pande, N.; Chabukswar, V. Novel Green Route of Synthesis of ZnO Nanoparticles by Using Natural Biodegradable Polymer and Its Application as a Catalyst for Oxidation of Aldehydes. J. Macromol. Sci. Part A 2014, 51, 941–947. [Google Scholar] [CrossRef]
- Taufiq, A.; Ulya, H.N.; Utomo, J.; Sunaryono; Hidayat, N.; Susanto, H.; Mufti, N.; Munasir; Soontaranon, S. Structural, Optical, and Antifungal Characters of Zinc Oxide Nanoparticles Prepared by Sol-gel Method. J. Phys. Conf. Ser. 2018, 1093, 012001. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Markiewicz, E.; Jesionowski, T. Structural Characterisation of ZnO Particles Obtained by the Emulsion Precipitation Method. J. Nanomater. 2012, 2012, 656353. [Google Scholar] [CrossRef]
- Zandi, S.; Kameli, P.; Salamati, H.; Ahmadvand, H.; Hakimi, M. Microstructure and optical properties of ZnO nanoparticles prepared by a simple method. Phys. B Condens. Matter 2011, 406, 3215–3218. [Google Scholar] [CrossRef]
- Xiong, G.; Pal, U.; Serrano, J.; Ucer, K.B.; Williams, R.T. Photoluminesence and FTIR study of ZnO nanoparticles: The impurity and defect perspective. Phys. Status Solidi C 2006, 3, 3577–3581. [Google Scholar] [CrossRef]
- Vafaee, M.; Ghamsari, M.S. Preparation and characterization of ZnO nanoparticles by a novel sol–gel route. Mater. Lett. 2007, 61, 3265–3268. [Google Scholar] [CrossRef]
- Kumar, N.; Saini, V.; Bijwe, J. Tribological Investigations of Nano and Micro-sized Graphite Particles as an Additive in Lithium-Based Grease. Tribol. Lett. 2020, 68, 124. [Google Scholar] [CrossRef]
- Shen, T.; Wang, D.; Yun, J.; Liu, Q.; Liu, X.; Peng, Z. Mechanical stability and rheology of lithium–calcium-based grease containing ZDDP. RSC Adv. 2016, 6, 11637–11647. [Google Scholar] [CrossRef]
- Hambali, E.; Puspita, N.N.I.A. Epoxidation of Palm Olein as Base Oil for Calcium Complex Bio Grease. Int. J. Oil Palm 2021, 4, 22–30. [Google Scholar] [CrossRef]
- Chan, C.-H.; Tang, S.W.; Mohd, N.K.; Lim, W.H.; Yeong, S.K.; Idris, Z. Tribological behavior of biolubricant base stocks and additives. Renew. Sustain. Energy Rev. 2018, 93, 145–157. [Google Scholar] [CrossRef]
- Salimon, J.; Salih, N.; Yousif, E. Biolubricants: Raw materials, chemical modifications and environmental benefits. Eur. J. Lipid Sci. Technol. 2010, 112, 519–530. [Google Scholar] [CrossRef]
- Salama, L.I.; Atta, M.B.; Ali, N.A. Effect of Synthesized ZnO Nanoparticles As Antioxidant on Cotton Seed Oil and Its Blend with Palm Olean. Int. J. Food Sci. Nutr. Diet. 2017, 6, 345–349. [Google Scholar] [CrossRef]
- Hernandez Battez, A.; Fernandez Rico, J.E.; Navas Arias, A.; Viesca Rodriguez, J.L.; Chou Rodriguez, R.; Diaz Fernandez, J.M. The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear 2006, 261, 256–263. [Google Scholar] [CrossRef]
Grease Sample | Grease Blends |
Palm Grease A | Palm-oil-based lithium grease (without nano-additives) |
Palm Grease B | Palm grease with 0.05 wt.% ZnO |
Palm Grease C | Palm grease with 0.1 wt.% ZnO |
Palm Grease D | Palm grease with 0.25 wt.% ZnO |
Palm Grease E | Palm grease with 0.5 wt.% ZnO |
Palm Grease F | Palm grease with 0.5 wt.% rGO |
Palm Grease G | Palm grease with 1 wt.% rGO |
Palm Grease H | Palm grease with 2 wt.% rGO |
Test Description | Test Standard | Commercial Lithium Grease | Palm Grease A | Palm Grease B | Palm Grease C | Palm Grease D | Palm Grease E | Palm Grease F | Palm Grease G | Palm Grease H |
---|---|---|---|---|---|---|---|---|---|---|
Penetration, 60× (0.1 mm) | ASTM D217 | 255 ± 5 | 200 ± 8 | - | - | - | - | - | - | - |
Penetration, unworked | ASTM D217 | 270 NLGI 2 ± 7 | 216 NLGI 3 ± 9 | - | - | - | - | - | - | - |
Roll stability, penetration change (0.1 mm) | ASTM D1831 | −15 | −16 | - | - | - | - | - | - | - |
Dropping point (°C) | ASTM D2265 | 160 ± 2 | 209 ± 6 | - | - | - | - | - | - | - |
Color | Visual | whitish | Beige | - | - | - | - | - | - | - |
Churned grease oil-release, oil separation (mass%) | AMS 1066 | 1.6 | 8.63 | - | - | - | - | - | - | - |
Kinematic viscosity at 40 °C (cSt) | ASTM D445 | 45 | 47.5 | - | - | - | - | - | - | - |
Kinematic viscosity at 100 °C (cSt) | ASTM D445 | 4.5 | 6.39 | 7.82 | 8.68 | 7.98 | 8.54 | 8.20 | 8.30 | 8.70 |
Copper corrosion at 100 °C, 24 h | ASTM D4048 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A |
Oxidation stability of base oil | ASTM D2272 IP 229 | 27 min ref [67] | 30 min | 32 min | 35 min | 40 min | 48 min | - | - | - |
Pour point (°C) | ASTM D7346 | 6 | 6 | 6 | 6 | 6 | 9 | 9 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassef, M.G.A.; Nassef, B.G.; Hassan, H.S.; Nassef, G.A.; Elkady, M.; Pape, F. Tribological and Chemical–Physical Behavior of a Novel Palm Grease Blended with Zinc Oxide and Reduced Graphene Oxide Nano-Additives. Lubricants 2024, 12, 191. https://doi.org/10.3390/lubricants12060191
Nassef MGA, Nassef BG, Hassan HS, Nassef GA, Elkady M, Pape F. Tribological and Chemical–Physical Behavior of a Novel Palm Grease Blended with Zinc Oxide and Reduced Graphene Oxide Nano-Additives. Lubricants. 2024; 12(6):191. https://doi.org/10.3390/lubricants12060191
Chicago/Turabian StyleNassef, Mohamed G. A., Belal G. Nassef, Hassan S. Hassan, Galal A. Nassef, Marwa Elkady, and Florian Pape. 2024. "Tribological and Chemical–Physical Behavior of a Novel Palm Grease Blended with Zinc Oxide and Reduced Graphene Oxide Nano-Additives" Lubricants 12, no. 6: 191. https://doi.org/10.3390/lubricants12060191
APA StyleNassef, M. G. A., Nassef, B. G., Hassan, H. S., Nassef, G. A., Elkady, M., & Pape, F. (2024). Tribological and Chemical–Physical Behavior of a Novel Palm Grease Blended with Zinc Oxide and Reduced Graphene Oxide Nano-Additives. Lubricants, 12(6), 191. https://doi.org/10.3390/lubricants12060191