Temperature Characteristics of Axle-Box Bearings Under Wheel Flat Excitation
Abstract
:1. Introduction
2. ABB Thermal Model Coupling Vehicle Operation Environment
2.1. Dynamic Boundary of ABB
2.1.1. Vehicle–Track Coupled Dynamics Model with Wheel Flat
2.1.2. Internal ABB Force
2.2. Thermal Analysis Model of ABB
2.2.1. Heat Generation Model
- 1.
- Power loss of ABB:
- 2.
- Heat source distribution:
2.2.2. Heat Transfer Model
- 1.
- Heat conduction:
- 2.
- Heat convection:
- 3.
- Heat radiation:
3. Experimental Tests
4. Temperature Characteristics of ABB
4.1. Temperature Distribution of ABB Under Normal Condition
4.2. Temperature Characteristics of ABBs at Different Wheel Flat Lengths
4.3. Temperature Characteristics of ABB at Different Speeds
5. Conclusions
- Longer wheel flats yield a higher temperature rise inside ABB. In particular, the temperature of the ABB outside row is greater than the ABB inside row. ABB temperature increases more significantly at higher speeds than at lower speeds.
- With wheel flat excitation, the temperature within ABB components follows the descending order of roller > cage > inner ring > outer ring > axle box. For the roller with the highest temperature, the temperature distribution gradually decreases from the contact area with the inner ring to that with the outer ring. The temperature at the small end is greater than that at the large end.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tarawneh, C.; Aranda, J.; Hernandez, V.; Crown, S.; Montalvo, J. An investigation into wayside hot-box detector efficacy and optimization. Int. J. Rail Transp. 2020, 8, 264–268. [Google Scholar] [CrossRef]
- Mu, J.; Zeng, J.; Wang, Q.; Sang, H. Determination of mapping relation between wheel flat and wheel/rail contact force for railway freight wagon using dynamic simulation. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2022, 236, 545–556. [Google Scholar] [CrossRef]
- Nikas, G.K. An advanced model to study the possible thermomechanical damage of lubricated sliding-rolling line contacts from soft particles. J. Tribol. 2001, 123, 828–841. [Google Scholar] [CrossRef]
- Sun, Q.G.; Wang, Y.F.; Wang, Y.; Lv, H.B. Comparing of temperatures of rolling bearing under the oil-air lubrication to the spray lubrication. Appl. Mech. Mater. 2013, 395, 763–768. [Google Scholar] [CrossRef]
- Hamraoui, M. Thermal behaviour of rollers during the rolling process. Appl. Therm. Eng. 2019, 29, 2386–2390. [Google Scholar] [CrossRef]
- Wang, H.; Conry, T.; Cusano, C. Stack-up forces for normal and abnormal operating conditions in a railroad roller bearing assembly. J. Mech. Des. 1998, 120, 707–713. [Google Scholar] [CrossRef]
- Ai, S.; Wang, W.; Wang, Y.; Zhao, Z. Temperature rise of double-row tapered roller bearings analyzed with the thermal network method. Tribol. Int. 2015, 87, 11–22. [Google Scholar] [CrossRef]
- Li, X.; Lv, Y.; Yan, K.; Liu, J.; Hong, J. Study on the influence of thermal characteristics of rolling bearings and spindle resulted in condition of improper assembly. Appl. Therm. Eng. 2017, 114, 221–233. [Google Scholar] [CrossRef]
- Yan, K.; Wang, N.; Zhai, Q.; Zhu, Y.; Zhang, J.; Niu, Q. Theoretical and experimental investigation on the thermal characteristics of double-row tapered roller bearings of high speed locomotive. Int. J. Heat Mass Transf. 2015, 84, 1119–1130. [Google Scholar] [CrossRef]
- Tarawneh, C.M.; Cole, K.D.; Wilson, B.M.; Alnaimat, F. Experiments and models for the thermal response of railroad tapered-roller bearings. Int. J. Heat Mass Tranf. 2008, 51, 5794–5803. [Google Scholar] [CrossRef]
- Cole, K.D.; Tarawneh, C.M.; Fuentes, A.A.; Wilson, B.; Navarro, L. Thermal models of railroad wheels and bearings. Int. J. Heat Mass Tranf. 2010, 53, 1636–1645. [Google Scholar] [CrossRef]
- Tarawneh, C.M.; Fuentes, A.A.; Kypuros, J.A.; Navarro, L.A.; Vaipan, A.G.; Wilson, B.M. Thermal modeling of a railroad tapered-roller bearing using finite element analysis. J. Therm. Sci. Eng. Appl. 2012, 4, 031002. [Google Scholar] [CrossRef]
- Blanuša, V.; Zeljković, M.; Milisavlevich, B.M.; Savić, B. Mathematical modelling of thermal behaviour of cylindrical roller bearing for towed railway vehicles. Teh. Vjesn. 2017, 24, 211–217. [Google Scholar]
- Zhou, X.; Zhu, Q.; Wen, B.; Zhao, G.; Han, Q. Experimental investigation on temperature field of a double-row tapered roller bearing. Tribol. Trans. 2019, 62, 1086–1098. [Google Scholar] [CrossRef]
- Gao, P.; Tang, W.; Cui, Y.; Wang, Y.; Mo, G.; Yin, J. Theoretical and experimental investigation on thermal characteristics of railway double-row tapered roller bearing. Energies 2022, 15, 4217. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Y.; Allen, P.; Yin, Z.; Zou, D.; Zhang, W. Analysis of vibration and temperature on the axle box bearing of a high-speed train. Veh. Syst. Dyn. 2019, 58, 1605–1628. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, F.; Wang, Z.; Zhang, W.; Wang, Y.; Liu, L. Dynamic response of the axle-box bearing of a high-speed train excited by wheel flat. Veh. Syst. Dyn. 2024, 62, 2260–2282. [Google Scholar] [CrossRef]
- Zander, M.; Otto, M.; Lohner, T.; Stahl, K. Evaluation of friction calculation methods for rolling bearings. Forsch. Ingenieurwes. 2023, 87, 1307–1316. [Google Scholar] [CrossRef]
- Wu, X.; Rakheja, S.; Ahmed, A.; Chi, M. Influence of a flexible wheelset on the dynamic responses of a high-speed railway car due to a wheel flat. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2018, 232, 1033–1048. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Y.; Mei, G.; Zhang, W.; Huang, G.; Yin, Z. Torsional vibration analysis of the gear transmission system of high-speed trains with wheel defects. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2020, 234, 123–133. [Google Scholar] [CrossRef]
- Zhai, W.; Xia, H.; Cai, C.; Gao, M.; Li, X.; Guo, X.; Zhang, N.; Wang, K. High-speed train–track–bridge dynamic interactions–Part I: Theoretical model and numerical simulation. Int. J. Rail Transp. 2013, 1, 3–24. [Google Scholar] [CrossRef]
- Zhai, W.; Sun, X. A detailed model for investigating vertical interaction between railway vehicle and track. Veh. Syst. Dyn. 1994, 23, 603–615. [Google Scholar] [CrossRef]
- Shen, Z.; Hedrick, J.; Elkins, J. A comparison of alternative creep force models for rail vehicle dynamic analysis. Veh. Syst. Dyn. 1983, 12, 79–83. [Google Scholar] [CrossRef]
- Kalker, J.J. Three-Dimensional Elastic Bodies in Rolling Contact; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Zhai, Z.; Zhu, S.; Yuan, X.; He, Z.; Cai, C. Nonlinear effects of a new mesh-type rail pad on the coupled vehicle-slab track dynamics system under extremely cold environment. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2023, 237, 285–296. [Google Scholar] [CrossRef]
- Hou, K.; Kalousek, J.; Dong, R. A dynamic model for an asymmetrical vehicle/track system. J. Sound Vib. 2003, 267, 591–604. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Y.; Yang, B.; Xiao, S.; Zhang, W. Raceway defect features of a high-speed train axle box bearing in the vehicle–track coupled system. IEEE Trans. Instrum. Meas. 2022, 72, 3503615. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Zhai, W.; Wang, K. Dynamic investigation of traction motor bearing in a locomotive under excitation from track random geometry irregularity. Int. J. Rail Transp. 2022, 10, 72–94. [Google Scholar] [CrossRef]
- Wu, P.; He, C.; Chang, Z.; Li, X.; Ren, Z.; Li, D.; Ren, C. Theoretical calculation models and measurement of friction torque for rolling bearings: State of the art. J. Braz. Soc. Mech. Sci. 2022, 44, 435. [Google Scholar] [CrossRef]
- Pinheiro, K.A.; Filho, S.D.S.C.; Vaz, J.R.P.; Mesquita, A.L.A. Effect of bearing dissipative torques on the dynamic behavior of H-Darrieus wind turbines. J. Braz. Soc. Mech. Sci. 2021, 43, 410. [Google Scholar] [CrossRef]
- Liu, J.; Yan, Z.; Shao, Y. An investigation for the friction torque of a needle roller bearing with the roundness error. Mech. Mach. Theory 2018, 121, 259–272. [Google Scholar] [CrossRef]
- Kanazawa, Y.; De Laurentis, N.; Kadiric, A. Studies of friction in grease-lubricated rolling bearings using ball-on-disc and full bearing tests. Tribol. Trans. 2020, 63, 77–89. [Google Scholar] [CrossRef]
- Bălan, M.R.D.; Stamate, V.C.; Houpert, L.; Olaru, D.N. The influence of the lubricant viscosity on the rolling friction torque. Tribol. Int. 2024, 72, 1–12. [Google Scholar] [CrossRef]
- Goncalves, D.; Cousseau, T.; Gama, A.; Campos, A.V.; Seabra, J.H. Friction torque in thrust roller bearings lubricated with greases, their base oils and bleed-oils. Tribol. Int. 2017, 107, 306–319. [Google Scholar] [CrossRef]
- Vaz, J.R.; Wood, D.H.; Bhattacharjee, D.; Lins, E.F. Drivetrain resistance and starting performance of a small wind turbine. Renew. Energy 2018, 117, 509–519. [Google Scholar] [CrossRef]
- Brändlein, J. Ball and Roller Bearings: Theory, Design and Application; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Burton, R.A.; Staph, H. Thermally activated seizure of angular contact bearings. ASLE Trans. 1967, 10, 408–417. [Google Scholar] [CrossRef]
- Pouly, F.; Changenet, C.; Ville, F.; Velex, P.; Damiens, B. Investigations on the power losses and thermal behaviour of rolling element bearings. Proc. Inst. Mech. Eng. Part J-J. Eng. 2010, 224, 925–933. [Google Scholar] [CrossRef]
- Harris, T.A.; Kotzalas, M.N. Advanced Concepts of Bearing Technology: Rolling Bearing Analysis; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Zhang, L.; Wang, Z.; Wang, Q.; Mo, J.; Feng, J.; Wang, K. The effect of wheel polygonal wear on temperature and vibration characteristics of a high-speed train braking system. Mech. Syst. Signal Process. 2023, 186, 109864. [Google Scholar] [CrossRef]
Condition | Vehicle Speed (km/h) | Ambient Temp. (°C) | Measured Temp. (°C) | Simulated Temp. (°C) |
---|---|---|---|---|
case 1 | 200 | ~15 | 44.64–53.08 | 47.62 |
case 2 | 300 | ~25 | 50.08–60.43 | 52.84 |
case 3 | 200 | ~15 | 53.83–64.73 | 58.93 |
case 4 | 300 | ~25 | 59.57–71.39 | 63.76 |
Node | Description | Node | Description |
---|---|---|---|
Axial nodes | |||
a1 | External surface of axle box (i) | a11 | External surface of axle box (o) |
a2 | Outer ring end face (i) | a12 | Inner ring end face (i) |
a3 | Roller large end–outer ring contacts (i) | a13 | Roller large end–inner ring contacts (i) |
a4 | Roller small end–outer ring contacts (i) | a14 | Roller small end–inner ring contacts (i) |
a5 | Outer ring–roller contacts (i) | a15 | Inner ring–roller contacts (i) |
a6 | Outer ring–roller contacts (o) | a16 | Inner ring–roller contacts (o) |
a7 | Roller small end–outer ring contacts (o) | a17 | Roller small end–inner ring contacts (o) |
a8 | Roller large end–outer ring contacts (o) | a18 | Roller large end–inner ring contacts (o) |
a9 | Outer ring end face (o) | a19 | Inner ring end face (o) |
Radial nodes | |||
r1 | External surface of axle box (i) | r11 | External surface of axle box (o) |
r2 | Internal surface of axle box (i) | r12 | Internal surface of axle box (o) |
r3 | Axle box–outer ring contacts (i) | r13 | Axle box–outer ring contacts (o) |
r4 | Outer ring (i) | r14 | Outer ring (o) |
r5 | Roller large end–cage contacts (i) | r15 | Roller large end–cage contacts (o) |
r6 | Roller (i) | r16 | Roller (o) |
r7 | Roller small end–cage contacts (i) | r17 | Roller small end–cage contacts (o) |
r8 | Inner ring (i) | r18 | Inner ring (o) |
r9 | Inner ring–wheelset axle contacts (i) | r19 | Inner ring–wheelset axle contacts (o) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Zhang, F.; Wang, Z.; Yang, C.; Zhang, W.; Gu, F. Temperature Characteristics of Axle-Box Bearings Under Wheel Flat Excitation. Lubricants 2025, 13, 19. https://doi.org/10.3390/lubricants13010019
Luo Y, Zhang F, Wang Z, Yang C, Zhang W, Gu F. Temperature Characteristics of Axle-Box Bearings Under Wheel Flat Excitation. Lubricants. 2025; 13(1):19. https://doi.org/10.3390/lubricants13010019
Chicago/Turabian StyleLuo, Yaping, Fan Zhang, Zhiwei Wang, Chen Yang, Weihua Zhang, and Fengshou Gu. 2025. "Temperature Characteristics of Axle-Box Bearings Under Wheel Flat Excitation" Lubricants 13, no. 1: 19. https://doi.org/10.3390/lubricants13010019
APA StyleLuo, Y., Zhang, F., Wang, Z., Yang, C., Zhang, W., & Gu, F. (2025). Temperature Characteristics of Axle-Box Bearings Under Wheel Flat Excitation. Lubricants, 13(1), 19. https://doi.org/10.3390/lubricants13010019