Effect of Change in Material Properties of the Abradable Coating on the Wear Behavior of It—Microstructure Model-Based Analysis Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Application of Abradable Seal for Aerospace and Its Consideration Condition
2.2. Experimental Procedure for Sample Production and Microstructure Sample Characterization
2.3. Rub Rig Test and Modeling Approach for the Configuration of the Rub Rig Test
2.4. FE Modal for 3D Microstructure
2.5. Microstructure FEM Model in LS-DYNA 13.1 Software
The Choice of Material for the Blade Modality and the Abradable Coating Is Crucial
- Abradability may be obtained by varying the testing parameters, such as the yield stress point and tangent modulus while maintaining the hardness and porosity level and the Young’s modulus of the seal.
- The Young’s modulus of the shroud material varies to ensure abradability, but testing factors like yield stress point and tangent modulus stay constant.
3. Results
3.1. FE. Model of Abradable Seal Following Volume Loss at 56% Porosity (48 HR15Y) and 46% Porosity (71 HR15Y) 3D Microstructure
3.2. The Abradability and Erosion Findings for All Components Are Shown for a 56% Porosity (48 HR15Y) Seal with a Young’s Modulus of 140 (GPa)
3.3. The Abradability and Erosion Findings for All Components Are Shown for a 56% Porosity (48 HR15Y) Seal with a Young’s Modulus of 100 (GPa)
3.4. The Abradability and Erosion Findings for All Components Are Shown for a 46% Porosity (71 HR15Y) Seal with a Young’s Modulus of 140 (GPa)
3.5. The Abradability and Erosion Findings for All Components for a 46% Porosity (71HR15Y) Seal with a Young’s Modulus of 100 (GPa)
3.6. Evaluation of Abradability in Relation to Experiment Findings
3.6.1. Evaluation of Coating Abradability in Relation to Hardness and Porosity
3.6.2. Evaluation of Coating Abradability in Relation to Erosion Rate and Bond Strength
3.6.3. Evaluation of Coating Abradability in Relation to Blade and Abradable Seal Wear Results
3.6.4. Variability in Parameters and Their Impact on Abradability
4. Conclusions
- Abradability was achieved by varying parameters such as yield stress and tangent modulus while maintaining consistent hardness, porosity, and Young’s modulus of the seal. Additionally, changes to the shroud material’s Young’s modulus enhanced abradability, provided that yield stress and tangent modulus remained constant;
- To determine the input parameters that alter coatings’ abradability and quantify the impact of those factors on the final product—abradability—microstructure-based FEA model analysis was used;
- How the output is affected by the primary parameters and how they interact was studied;
- Setting the coating processing settings to attain the ideal composition and qualities will be made much easier by this research;
- This will make it possible to apply abradabable coatings on high-pressure compressor shrouds, which will boost engine efficiency;
- The viability of abradable coatings in high-pressure turbine zones is being investigated using a similar idea.
- Higher degrees of porosity are shown to increase erosion rate and abradability. On the other hand, abradability falls with increasing bond strength and hardness. Additionally, if coating wear increases or blade wear decreases the abradability number increases, indicating a balance between durability and material removal in coating performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boyce, M.P. Gas Turbine Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Wallis, A.M.; Denton, J.D.; Demargne, A.A.J. The Control of Shroud Leakage Flows to Reduce Aerodynamic Losses in a Low Aspect Ratio, Shrouded Axial Flow Turbine. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, Munich, Germany, 8–11 May 2000; American Society of Mechanical Engineers: New York, NY, USA, 2000; Volume 78545, p. V001T03A046. [Google Scholar]
- Michael, L.N.; Gretchen, L.G.; Robert, L.B.; Yvonne, D.K.; Sharon, S.P.; Chris, J.B.; Robert, B.S.; Alberto, A. The Widest Practicable Dissemination: The NASA Technical Report Server; NASA: Washington, DC, USA, 1995.
- Melcher, K.J.; Kypuros, J.A. Toward a Fast-Response Active Turbine Tip Clearance Control. In Proceedings of the 16th International Symposium on Airbreathing Engines, Cleveland, OH, USA, 31 August–5 September 2003. [Google Scholar]
- Steinetz, B.M.; Hendricks, R.C.; Munson, J. Advanced Seal Technology in Meeting Next Generation Engine Goals; NASA/TM-1998-206961, AVT-PPS Paper; NASA: Washington, DC, USA, 1998.
- Dorfman, M.; Erning, U.; Mallon, J. Gas Turbines Use ‘Abradable’Coatings for Clearance-Control Seals. Seal. Technol. 2002, 2002, 7–8. [Google Scholar] [CrossRef]
- Schmid, R.K.; Ghasripoor, F.; Dorfman, M.; Wei, X. An Overview of Compressor Abradables. In Proceedings of the ITSC 2000, Montreal, QC, Canada, 8–11 May 2000; ASM International: Materials Park, OH, USA. [Google Scholar]
- Novinski, E.R. The Design of thermal sprayed abradable seal coating for gas turbine engines. In Proceedings of the ITSC 1991, Pittsburg, PA, USA, 4–10 May 1991; Bernecki, T.F., Ed.; ASM International: Materials Parck, OH, USA, 1991. [Google Scholar]
- Basu, B.; Kalin, M. Tribology of Ceramics and Composites: A Materials Science Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Davim, J.P. Wear of Advanced Materials; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Borel, M.O.; Nicoll, A.R.; Schla, H.W.; Schmid, R.K. The Wear Mechanisms Occurring in Abradable Seals of Gas Turbines. Surf. Coat. Technol. 1989, 39, 117–126. [Google Scholar] [CrossRef]
- Carter, T.J. Common Failures in Gas Turbine Blades. Eng. Fail. Anal. 2005, 12, 237–247. [Google Scholar] [CrossRef]
- Emanuelson, R.C.; Witherell, W.F. Abradable Coating. US Patent 3,413,136, 26 November 1968. [Google Scholar]
- Shi, J.; Li, L.; Freeman, T.J. Abradable Coatings for High-Performance Systems. U.S. Patent US10900371B2, 26 January 2021. [Google Scholar]
- Berndt, C.C.; Khor, K.A.; Lugscheider, E.F. Thermal Spray 2001: New Surfaces for a New Millenium. In Proceedings of the 2nd International Thermal Spray Conference, Singapore, 28–30 May 2001; ASM International: Almere, The Netherlands, 2001. [Google Scholar]
- Hou, X.; Liu, Z.; Wang, B.; Lv, W.; Liang, X.; Hua, Y. Stress-Strain Curves and Modified Material Constitutive Model for Ti-6Al-4V over the Wide Ranges of Strain Rate and Temperature. Materials 2018, 11, 938. [Google Scholar] [CrossRef] [PubMed]
- Rathmann, U.; Olmes, S.; Simeon, A. Sealing Technology: Rub Test Rig for Abrasive/Abradable Systems. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, Montreal, QC, Canada, 14–17 May 2007; Volume 47942, pp. 223–228. [Google Scholar]
- Xiao, J.; Chen, Y.; Chen, D.; Tian, J.; Ouyang, H.; Wang, A. Interactions between Blades and Abradable Coatings: A Numerical Approach Considering Geometrical Nonlinearity. Int. J. Mech. Sci. 2021, 191, 106052. [Google Scholar] [CrossRef]
- Faraoun, H.I.; Grosdidier, T.; Seichepine, J.-L.; Goran, D.; Aourag, H.; Coddet, C.; Zwick, J.; Hopkins, N. Improvement of Thermally Sprayed Abradable Coating by Microstructure Control. Surf. Coat. Technol. 2006, 201, 2303–2312. [Google Scholar] [CrossRef]
- Faraoun, H.-I.; Seichepine, J.-L.; Coddet, C.; Aourag, H.; Zwick, J.; Hopkins, N.; Sporer, D.; Hertter, M. Modelling Route for Abradable Coatings. Surf. Coat. Technol. 2006, 200, 6578–6582. [Google Scholar] [CrossRef]
- Klusemann, B.; Hortig, C.; Svendsen, B. Modeling and Simulation of the Microstructural Behaviour in Thermal Sprayed Coatings. Proc. Appl. Math. Mech. 2009, 9, 421–422. [Google Scholar] [CrossRef]
- Bolelli, G.; Candeli, A.; Koivuluoto, H.; Lusvarghi, L.; Manfredini, T.; Vuoristo, P. Microstructure-Based Thermo-Mechanical Modelling of Thermal Spray Coatings. Mater. Des. 2015, 73, 20–34. [Google Scholar] [CrossRef]
- Nayebpashaee, N.; Seyedein, S.H.; Aboutalebi, M.R.; Sarpoolaky, H.; Hadavi, S.M.M. Finite Element Simulation of Residual Stress and Failure Mechanism in Plasma Sprayed Thermal Barrier Coatings Using Actual Microstructure as the Representative Volume. Surf. Coat. Technol. 2016, 291, 103–114. [Google Scholar] [CrossRef]
- Klusemann, B.; Denzer, R.; Svendsen, B. Microstructure-Based Modeling of Residual Stresses in WC-12Co-Sprayed Coatings. J. Therm. Spray Technol. 2012, 21, 96–107. [Google Scholar] [CrossRef]
- Sheng, L.; Xiao, Y.; Jiao, C.; Du, B.; Li, Y.; Wu, Z.; Shao, L. Influence of Layer Number on Microstructure, Mechanical Properties and Wear Behavior of the TiN/Ti Multilayer Coatings Fabricated by High-Power Magnetron Sputtering Deposition. J. Manuf. Process. 2021, 70, 529–542. [Google Scholar] [CrossRef]
- Zemlianov, A.; Balokhonov, R.; Romanova, V.; Gatiyatullina, D. The Influence of Bi-Layer Metal-Matrix Composite Coating on the Strength of the Coated Material. Procedia Struct. Integr. 2022, 35, 181–187. [Google Scholar] [CrossRef]
- Irissou, E.; Dadouche, A.; Lima, R.S. Tribological Characterization of Plasma-Sprayed CoNiCrAlY-BN Abradable Coatings. J. Therm. Spray Technol. 2014, 23, 252–261. [Google Scholar] [CrossRef]
- Aussavy, D. Processing Characterization and Modeling of Thermomechanical Properties of Threee Abradable Coatings: NiCrAl-Bentonite, CoNiCrAlY-BN-Polyester, and YSZ-Polyester. Ph.D. Thesis, Université de Technologie de Belfort-Montbeliard, Sevenans, France, 2016. [Google Scholar]
- Mittal, V. High Performance Polymers and Engineering Plastics; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Jadhav, P. Abradable Coatings: Design through Microstructure Based Models. Mater. Today Proc. 2022, 62, 7353–7357. [Google Scholar] [CrossRef]
- Azmeera, A.K.; Jadhav, P.; Lande, C. Microstructure Image-Based Finite Element Methodology to Design Abradable Coatings for Aero Engines. Aerospace 2023, 10, 873. [Google Scholar] [CrossRef]
- Huang, J.; Xueqiang, C.A.O.; Wenbo, C.; Xiaojun, G.U.O.; Min, L.I.; Wenjun, W.; Shujuan, D.; Li, L.I.U.; Meizhu, C. A Comprehensive Review of Thermally Sprayed Abradable Sealing Coatings: Focusing on Abradability. Chin. J. Aeronaut. 2024, 37, 1–25. [Google Scholar] [CrossRef]
- Bertuol, K.; Rivadeneira, F.R.; Nair, R.B.; Barnett, B.; Moreau, C.; Stoyanov, P. Influence of hBN on the Abradable Performance of AlSi-Based Coatings: Bridging the Gap between Tribological Assessment and Abradability Testing. Surf. Coat. Technol. 2024, 489, 131060. [Google Scholar] [CrossRef]
- Volpe, E.; Motyka, E.; Roeseler, S.; Plessinger, R.; Noyes, T.; Kweder, J. Using Simultaneous Differential Scanning Calorimetry and Thermogravimetric Analysis to Develop Braze Processes for Porous FELTMETALTM Abradable Seal Material. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, London, UK, 24–28 June 2024; American Society of Mechanical Engineers: New York, NY, USA, 2024; Volume 88018, p. V009T17A024. [Google Scholar]
- Monteiro, B.; Simões, S. Recent Advances in Hybrid Nanocomposites for Aerospace Applications. Metals 2024, 14, 1283. [Google Scholar] [CrossRef]
- Murthy, J.K.N.; Venkataraman, B.; Lakshmi, G.; Ramakrishna, M. Development of Tribological Coatings for Aerospace and Missile Applications. Def. Sci. J. 2023, 73, 212–219. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, X.; Joost, W.; Sun, X. Micro–Macro Finite Element Modeling Method for Rub Response in Abradable Coating Materials. J. Mater. Sci. 2024, 59, 4934–4947. [Google Scholar] [CrossRef]
- Cui, Y.; Yue, Z.; Guo, M.; Wang, C.; Jiao, J.; Cheng, L. Microstructure and phase correlation of DySZ-Polyester abradable seal coating after thermal exposure. Mater. Today Commun. 2023, 36, 106641. [Google Scholar] [CrossRef]
- Gao, S.; Xue, W.; Duan, D.; Li, S.; Zheng, H. Effect of thermal–physical properties on the abradability of seal coating under high-speed rubbing condition. Wear 2018, 394, 20–29. [Google Scholar] [CrossRef]
- Soltani, R.; Heydarzadeh-Sohi, M.; Ansari, M.; Afsari, F.; Valefi, Z. Effect of APS process parameters on high- temperature wear behavior of nickel–graphite abradable seal coatings. Surf. Coat. Technol. 2017, 321, 403–408. [Google Scholar] [CrossRef]
- Martinet, B.; Cappella, A.; Philippon, S.; Montebello, C. Effect of temperature on wear mechanisms of an aluminium-based abradable coating for aircraft engines after a dynamic interaction with a Ti6Al4V blade. Wear 2020, 446, 203202. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, L.; Li, C.J.; Yang, G.J. Porous spheres enabling excellent high-temperature abradability and long lifetime for abradable seal coating. J. Eur. Ceram. Soc. 2024, 44, 1721–1732. [Google Scholar] [CrossRef]
- Tong, Y.Q.; Shi, Q.S.; Liu, M.J.; Li, G.R.; Li, C.J.; Yang, G.J. Lightweight epoxy-based abradable seal coating with high bonding strength. J. Mater. Sci. Technol. 2021, 69, 129–137. [Google Scholar] [CrossRef]
- Yan, H.; Yu, Y.; Song, Y.; Lei, B.; Ni, Y.; Tang, A.; Li, Y. An abradable and anti-corrosive CuAl-Ni/C seal coating for aero-engine. Chem. Eng. J. 2023, 474, 145665. [Google Scholar] [CrossRef]
- Zhang, B.; Marshall, M. Investigating material removal mechanism of Al-Si base abradable coating in labyrinth seal system. Wear 2019, 426, 239–249. [Google Scholar] [CrossRef]
- Mohammad, F.; Mudasar, M.; Kashif, A. Criteria for abradable coatings to enhance the performance of gas turbine engines. J. Mater. Sci. Metall. 2021, 2, 1–7. [Google Scholar]
- Silva, M.; Tantot, N.; Selezneff, S.; Walsh, M.; Nyatando, R.; Johann, E.; Kando, A. Advanced Aero-Engines Technology Enablers: An Overview of the European Project E-BREAK. Turbo Expo Power Land Sea Air 2016, 49682, V001T01A015. [Google Scholar]
- Tüfekci, M. Performance Evaluation Analysis of Ti-6Al-4V Foam Fan Blades in Aircraft Engines: A Numerical Study. Compos. Part C Open Access 2023, 12, 100414. [Google Scholar] [CrossRef]
- Gialanella, S.; Malandruccolo, A. Superalloys. In Aerospace Alloys; Topics in Mining, Metallurgy and Materials Engineering; Springer International Publishing: Cham, Switzerland, 2020; pp. 267–386. ISBN 978-3-030-24439-2. [Google Scholar]
- Krenkel, W. Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wilson, S. Thermally Sprayed Abradable Coating Technology for Sealing in Gas Turbines. In Proceedings of the 6th International Conference on the Future of Gas Turbine Technology, Brussels, Belgium, 17–18 October 2012. [Google Scholar]
- Metco, O. Rapid Validation of Turbomachinery Abradable Systems Using Oerlikon Metco’s Rub-Test Facility; SF-0029.0–Abradable Testing; Oerlikon: Zürich, Switzerland, 2020. [Google Scholar]
- LS-DYNA® Theory Manual. Available online: https://ftp.lstc.com/anonymous/outgoing/jday/manuals/DRAFT_Theory.pdf (accessed on 27 June 2024).
- Metco, O. Material Product Data Sheet: Nickel Chromium Aluminum Yttrium (NiCrAlY) Powder for Thermal Spray; Oerlikon Metco: Westbury, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Sporer, D.; Dorfman, M.; Xie, L.; Refke, A.; Giovannetti, I.; Giannozzi, M. Processing and Properties of Advanced Ceramic Abradable Coatings. In Proceedings of the Thermal Spray 2007: Global Coating Solutions, Beijing, China, 14–16 May 2007; pp. 495–500. [Google Scholar]
- Oerlikon-Metco. 2014. Improve Efficiency and Reduce Emissions with High Pressure Turbine Abradable Coatings Industrial Gas. Available online: https://www.oerlikon.com/ecoma/files/SF-0016.1_Steam_Turbine_Abradables_EN.pdf?download=true (accessed on 5 October 2024).
- Bidmeshki, C. Microstructural, Mechanical, and Tribological Evaluation of Thermally Sprayed Wear-Resistant Coatings for Aerospace Applications. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2023. [Google Scholar]
- Pawlowski, L. The Science and Engineering of Thermal Spray Coatings; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- E2109-01; Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings. ASTM International: West Conshohocken, PA, USA, 2014.
- Material Product Data Sheet CoNiCrAlY-BN/Polyester Abradable Thermal Spray Powders. Available online: https://www.google.com/search?q=Material+Product+Data+Sheet%0D%0ACoNiCrAlY (accessed on 5 October 2024).
S. No | Stress (σ) GPa | Strain (ε) |
---|---|---|
1 | 0 | 0 |
2 | 0.38 | 0.02 |
3 | 0.57 | 0.025 |
4 | 0.72 | 0.05 |
5 | 0.73 | 0.12 |
6 | 0.7 | 0.25 |
7 | 0.56 | 0.3 |
Property | Unit | Value |
---|---|---|
Density | (kg/mm3) | 4.45 × 10−6 |
Young’s modulus | (GPa) | 114 |
Poisson’s ratio | - | 0.31 |
Material | Density (Kg/mm3) | Failure Strain | Poisson’s Ratio | Young’s Modulus (GPa) | Yield Strength (GPa) [50] | Tangent Modulus (GPa) [50] |
---|---|---|---|---|---|---|
Abradable seal (CoNiCrAlY) | 3 × 10−6 [60] | 0.025 [31] | 0.3 [28] | 140 [50] | 0.35 | 75 |
0.575 | 97.5 | |||||
0.7 | 120 | |||||
100 [50] | 0.35 | 75 | ||||
0.575 | 97.5 | |||||
0.7 | 120 | |||||
Porosity | 1 × 10−6 [29] | 0.04 [29] | 0.33 [28] | 2.0 [29] | 0.025 | 0.1 |
(Oxide+BN) | 3.8 × 10−6 [49] | 0.01 [31] | 0.3 [28] | 190 [28] | 0.375 | 180 |
S.no | Young’s Modulus (GPa) | Yield Strength (GPa) | Tangent Modulus (GPa) | Abradable Seal (CoNiCrAlY) (mm3) | (Oxide + BN) (mm3) | Blade (mm3) | Abradability |
---|---|---|---|---|---|---|---|
1 | 140 | 0.7 | 120 | 6.62 × 10−2 | 3.7 × 10−2 | 1.9 × 10−2 | 5.43 |
0.575 | 97.5 | 7.2 × 10−2 | 3.68 × 10−2 | 1.75 × 10−2 | 6.2 | ||
0.35 | 75 | 7.8 × 10−2 | 3.68 × 10−2 | 1.52 × 10−2 | 7.5 | ||
2 | 100 | 0.7 | 120 | 6.77 × 10−2 | 3.69 × 10−2 | 1.7 × 10−2 | 6.81 |
0.575 | 97.5 | 7.81 × 10−2 | 3.688 × 10−2 | 1.6 × 10−2 | 7.12 | ||
0.35 | 75 | 7.9 × 10−2 | 3.7 × 10−2 | 1.41 × 10−2 | 7.42 |
s.no | Young’s Modulus (GPa) | Yield Strength (GPa) | Tangent Modulus (GPa) | Abradable Seal (CoNiCrAlY) (mm3) | (Oxide + BN) (mm3) | Blade (mm3) | Abradability |
---|---|---|---|---|---|---|---|
1 | 140 | 0.7 | 120 | 6.2 × 10−2 | 4.65 × 10−2 | 2.1 × 10−2 | 5.2 |
0.575 | 97.5 | 6.27 × 10−2 | 4.72 × 10−2 | 1.98 × 10−2 | 5.5 | ||
0.35 | 75 | 6.8 × 10−2 | 4.75 × 10−2 | 1.82 × 10−2 | 6.35 | ||
2 | 100 | 0.7 | 120 | 6.74 × 10−2 | 4.6 × 10−2 | 2.03 × 10−2 | 5.5 |
0.575 | 97.5 | 6.93 × 10−2 | 4.69 × 10−2 | 1.98 × 10−2 | 5.8 | ||
0.35 | 75 | 7.62 × 10−2 | 4.82 × 10−2 | 1.83 × 10−2 | 6.9 |
S. No | Property | Case 1 | Case 2 |
---|---|---|---|
1 | Bond strength (Mpa) | 4.8 | 12.5 |
2 | Erosion rate (μm/s) | 5.9 | 2.2 |
3 | Wear of blade (μm) | 0 | 100 |
4 | Wear of abradable seal (μm) | 1100 | 900 |
5 | Porosity (%) | 56 | 46 |
6 | Rockwell hardness (HR15Y) | 48 | 71 |
7 | Abradability | 6.81 | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azmeera, A.K.; Jadhav, P.; Lande, C. Effect of Change in Material Properties of the Abradable Coating on the Wear Behavior of It—Microstructure Model-Based Analysis Approach. Lubricants 2025, 13, 22. https://doi.org/10.3390/lubricants13010022
Azmeera AK, Jadhav P, Lande C. Effect of Change in Material Properties of the Abradable Coating on the Wear Behavior of It—Microstructure Model-Based Analysis Approach. Lubricants. 2025; 13(1):22. https://doi.org/10.3390/lubricants13010022
Chicago/Turabian StyleAzmeera, Anitha Kumari, Prakash Jadhav, and Chhaya Lande. 2025. "Effect of Change in Material Properties of the Abradable Coating on the Wear Behavior of It—Microstructure Model-Based Analysis Approach" Lubricants 13, no. 1: 22. https://doi.org/10.3390/lubricants13010022
APA StyleAzmeera, A. K., Jadhav, P., & Lande, C. (2025). Effect of Change in Material Properties of the Abradable Coating on the Wear Behavior of It—Microstructure Model-Based Analysis Approach. Lubricants, 13(1), 22. https://doi.org/10.3390/lubricants13010022