Preparation and Tribological Performance of the Ag/BN Nanocomposite as Additives for Lithium-Based Grease
Abstract
:1. Introduction
2. Experimental Details
2.1. Synthesis of Ag/BN Nanocomposite
2.2. Characterization and Tribological Performance Evaluation
3. Results and Discussion
3.1. Chemical Composition, Structure, and Morphology Analysis
3.2. Tribological Analysis
4. Conclusions
- Ag nanoparticles were successfully synthesized on the BN surface, and the Ag/BN nanocomposite was obtained.
- The Ag/BN nanocomposite significantly improves the friction reduction and anti-wear performance of LBG across various loads and sliding speeds. Notably, under the conditions of a 10 N load, a 30 min test duration, a 50 mm/s sliding speed, and a 2 wt% additive concentration, LBG containing a Ag/BN nanocomposite exhibits the lowest average friction coefficient and wear rate of 0.33 and 1.08 × 10−14 m3/(N × m), respectively. These values represent reductions of 35.2% and 41.6% compared to pure LBG.
- Compared to Ag and BN nanoparticles individually, the Ag/BN nanocomposite as an additive enhances the lubrication capability of LBG more effectively. The lubrication mechanisms of worn surfaces were explored using 3D laser microscopy (SEM/EDS and XPS). The improved lubrication performance of LBG with the Ag/BN nanocomposite can be attributed to its repairing effect, the formation of a lubricating film composed of Ag, BN, and Fe-containing compounds, and its micro-bearing effect.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gangopadhyay, A. A review of automotive engine friction reduction opportunities through technologies related to tribology. Trans. Indian Inst. Met. 2017, 70, 527–535. [Google Scholar] [CrossRef]
- Shen, Y.H.; Wang, Y.S.; Lin, J.H.; Zhang, P.; Gao, X.D.; Wang, Z.J. Study on anti-wear and friction-reducing compounding additives in lithium greases. Ind. Lubr. Tribol. 2023, 75, 546–553. [Google Scholar] [CrossRef]
- Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.S.; Harith, M.H. A review on bio-based lubricants and their applications. J. Clean. Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Tuero, A.G.; Bartolomé, M.; Gonçalves, D.; Viesca, J.L.; Fernández-González, A.; Seabra, J.H.O.; Battez, A.H. Phosphonium-based ionic liquids as additives in calcium/lithium greases. J. Mol. Liq. 2021, 338, 116697. [Google Scholar] [CrossRef]
- Wang, J.B.; Zhang, H.; Hu, W.J.; Li, J.S. Tribological properties and lubrication mechanism of nickel nanoparticles as an additive in lithium grease. Nanomaterials 2022, 12, 2287. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Li, A.L.; Guo, Y.C.; Liu, S.F.; Zhang, Y.; Kong, L.H. Tribological properties of nanometer cerium oxide as additives in lithium grease. J. Rare Earths 2018, 36, 209–214. [Google Scholar] [CrossRef]
- Fan, X.Q.; Gan, C.L.; Feng, P.; Ma, X.L.; Yue, Z.F.; Li, H.; Li, W.; Zhu, M.H. Controllable preparation of fluorinated boron nitride nanosheets for excellent tribological behaviors. Chem. Eng. J. 2022, 431, 133482. [Google Scholar] [CrossRef]
- Wang, L.; Qi, J.J.; Zhang, S.; Ding, M.C.; Wei, W.; Wang, J.H.; Zhang, Z.H.; Qiao, R.X.; Zhang, Z.B.; Li, Z.H.; et al. Abnormal anti-oxidation behavior of hexagonal boron nitride grown on copper. Nano Res. 2022, 15, 7577–7583. [Google Scholar] [CrossRef]
- Wang, T.; Li, Z.J.; Li, J.B.; He, Q. Impact of boron nitride nanoparticles on the wear property of lithium base grease. J. Mater. Eng. Perform. 2020, 29, 4991–5000. [Google Scholar] [CrossRef]
- Wu, H.X.; Yin, S.C.; Du, Y.; Wang, L.P.; Yang, Y.; Wang, H.F. Alkyl-functionalized boron nitride nanosheets as lubricant additives. ACS Appl. Nano Mater. 2020, 3, 9108–9116. [Google Scholar] [CrossRef]
- Rasul, M.G.; Kiziltas, A.; Hoque, M.S.B.; Banik, A.; Hopkins, P.E.; Tan, K.T.; Arfaei, B.; Shahbazian-Yassar, R. Improvement of the thermal conductivity and tribological properties of polyethylene by incorporating functionalized boron nitride nanosheets. Tribol. Int. 2022, 165, 107277. [Google Scholar] [CrossRef]
- Liu, C.L.; Tang, G.B.; Su, F.H.; Xu, X.; Li, Z.J. Functionalised h-BN as an effective lubricant additive in PAO oil for MoN coating sliding against Si3N4 ball. Lubr. Sci. 2020, 33, 33–42. [Google Scholar] [CrossRef]
- Xia, Y.Q.; Cao, Y.N.; Feng, X.; Haris, M.P. A comparative study on the electrical and tribological characteristic of magnetron sputtered Ag, Cu and Al films under current-carrying friction. Ind. Lubr. Tribol. 2021, 73, 1219–1225. [Google Scholar] [CrossRef]
- Pirhayati, P.; Aval, H.J.; Loureiro, A. Characterization of microstructure, corrosion, and tribological properties of a multilayered friction surfaced Al-Mg-Si-Ag alloy. Arch. Civ. Mech. Eng. 2022, 22, 176. [Google Scholar] [CrossRef]
- Dong, L.R.; Li, C.S.; Tang, H. Tribological properties of Ag/BSCCO self-lubricating composites. Int. J. Mod. Phys. B 2010, 24, 2664–2669. [Google Scholar] [CrossRef]
- Wang, H.S.; Qiao, X.L.; Chen, J.G.; Ding, S.Y. Preparation of silver nanoparticles by chemical reduction method. Colloid Surf. A 2004, 256, 111–115. [Google Scholar] [CrossRef]
- Gao, H.F.; Yang, H. Preparation and characterization of cinnamaldehyde/polyvinyl alcohol/silver nanoparticles ternary composite films. Int. J. Polym. Anal. Charact. 2021, 26, 24–36. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.Z.; Li, Z.C.; Zhuo, R.S.; Zhao, J.N.; Duan, Y.W.; Liu, L.; Yang, J.Q. Experimental study on the preparation of monodisperse nano-silver by hydrothermal synthesis. Mater. Chem. Phys. 2024, 314, 128902. [Google Scholar] [CrossRef]
- Tan, D.Q.; Dong, M.Y.; Xia, Y.J.; Wang, X.Y.; Wei, H.G. Chemically reduced silver nanoparticles: Preparation and applications. Emerg. Mater. Res. 2023, 13, 56–64. [Google Scholar] [CrossRef]
- Meng, Y.; Su, F.H.; Chen, Y.Z. Supercritical fluid synthesis and tribological applications of silver nanoparticle-decorated graphene in engine oil nanofluid. Sci. Rep. 2016, 6, 31246. [Google Scholar] [CrossRef]
- Kumara, C.; Luo, H.M.; Leonard, D.N.; Meyer, H.M.; Qu, J. Organic-Modified Silver Nanoparticles as Lubricant Additives. ACS Appl. Mater. Interfaces 2017, 9, 37227–37237. [Google Scholar] [CrossRef]
- Wang, W.; Chang, W.J.; Lv, F.F.; Xie, Z.L.; Yu, C.C. Preparation and tribological properties of fluorinated boron nitride nanosheets water-based additive. Chin. J. Mater. Res. 2024, 38, 410–422. [Google Scholar]
- Charoo, M.S.; Wani, M.F. Tribological properties of h-BN nanoparticles as lubricant additive on cylinder liner and piston ring. Lubr. Sci. 2017, 29, 241–254. [Google Scholar] [CrossRef]
- Ahmadi, M.; Kaleji, B.K. TCA (Ag doped TiO2-CuO) mesoporous composite nanoparticles: Optical, XPS, and morphological characterization. J. Mater. Sci. Mater. Electron. 2021, 32, 13450–13461. [Google Scholar] [CrossRef]
- Corro, G.; Vidal, E.; Cebada, S.; Pal, U.; Bañuelos, F.; Vargas, D.; Guilleminot, E. Electronic state of silver in Ag/SiO2 and Ag/ZnO catalysts and its effect on diesel particulate matter oxidation: An XPS study. Appl. Catal. B Environ. Energy 2017, 216, 1–10. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.K.; Yadav, S.K.; Savu, R.; Moshkalev, S.A. Mechanical pressure-induced chemical cutting of boron nitride sheets into boron nitride quantum dots and optical properties. J. Alloys Compd. 2016, 683, 38–45. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Bagdasaryan, A.A.; Pshyk, A.; Dyadyura, K. Adaptive multicomponent nanocomposite coatings in surface engineering. Physics-Uspekhi 2017, 60, 586–607. [Google Scholar] [CrossRef]
- Bondarev, A.V.; Fraile, A.; Polcar, T.; Shtansky, D.V. Mechanisms of friction and wear reduction by h-BN nanosheet and spherical W nanoparticle additives to base oil: Experimental study and molecular dynamics simulation. Tribol. Int. 2020, 151, 106493. [Google Scholar] [CrossRef]
- Bian, S.N.; Yu, L.H.; Xu, J.H.; Xu, J.D. Impact of Ag on the microstructure and tribological behaviors of adaptive ZrMoN–Ag composite lubricating films. J. Mater. Res. Technol. 2022, 19, 2346–2355. [Google Scholar] [CrossRef]
- Zuo, B.; Yu, L.H.; Xu, J.H. Effect of Ag content on friction and wear properties of TiCN/Ag films in different service environments. Vacuum 2023, 212, 112029. [Google Scholar] [CrossRef]
- Ju, H.B.; Guo, J.L.; Yu, L.H.; Xu, J.H.; Luan, J. Enhancement of the mechanical and tribological properties of self-lubricant Mo2N–Ag composite film by adding amorphous SiNx. Ceram. Int. 2024, 50, 8463–8471. [Google Scholar] [CrossRef]
- Zheng, X.; Su, L.H.; Deng, G.Y.; Zhang, J.; Zhu, H.T.; Tieu, A.K. Study on lubrication characteristics of C4-alkane and nanoparticle during boundary friction by molecular dynamics simulation. Metals 2021, 11, 1464. [Google Scholar] [CrossRef]
- Li, K.S.; Zhang, Y.B.; Tan, W.K.; Wang, J.W.; Xu, Z.H.; Li, Z.J.; He, Q. Investigation of friction and vibration performance of lithium complex grease containing candle soot on aviation electrical machine. Wear 2024, 550–551, 205401. [Google Scholar] [CrossRef]
- Luo, T.; Wei, X.W.; Huang, X.; Huang, L.; Yang, F. Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceram. Int. 2014, 40, 7143–7149. [Google Scholar] [CrossRef]
- Lai, S.Q.; Yue, L.; Li, T.S.; Hu, Z.M. The friction and wear properties of polytetrafluoroethylene filled with ultrafine diamond. Wear 2005, 260, 462–468. [Google Scholar] [CrossRef]
- Wang, P.; Deng, G.Y.; Zhang, H.B.; Yin, J.; Xiong, X.; Zhang, X.; Zhu, H.T. Microstructural feature and tribological behaviors of pyrolytic carbon-coated copper foam/carbon composite. J. Mater. Sci. 2019, 54, 13557–13568. [Google Scholar] [CrossRef]
- Demas, N.G.; Timofeeva, E.V.; Routbort, J.L.; Fenske, G.R. Tribological effects of BN and MoS2 nanoparticles added to polyalphaolefin oil in piston skirt/cylinder liner tests. Tribol. Lett. 2012, 47, 91–102. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.X.; Zhang, Q.Q.; Tan, X.; Liu, Y.F.; Li, H.L.; Liu, H.; Hu, E.Z.; Hu, X.G. Synthesis, characterization, and tribological performances of nano-CeO2/biodiesel carbon soot composites as a novel lubricant additive in polyalphaolefin. J. Ind. Eng. Chem. 2023, 126, 432–443. [Google Scholar] [CrossRef]
- Hu, E.Z.; Xu, Y.; Hu, K.H.; Hu, X.G. Tribological properties of 3 types of MoS2 additives in different base greases. Lubr. Sci. 2017, 29, 541–555. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Li, C.; Wang, X.; Zhang, L.; Tan, X.; Peng, Y.; Xu, X. Preparation and Tribological Performance of the Ag/BN Nanocomposite as Additives for Lithium-Based Grease. Lubricants 2025, 13, 30. https://doi.org/10.3390/lubricants13010030
Chen Y, Li C, Wang X, Zhang L, Tan X, Peng Y, Xu X. Preparation and Tribological Performance of the Ag/BN Nanocomposite as Additives for Lithium-Based Grease. Lubricants. 2025; 13(1):30. https://doi.org/10.3390/lubricants13010030
Chicago/Turabian StyleChen, Yijun, Chuan Li, Xiaodong Wang, Li Zhang, Xu Tan, Yubin Peng, and Xiaoyong Xu. 2025. "Preparation and Tribological Performance of the Ag/BN Nanocomposite as Additives for Lithium-Based Grease" Lubricants 13, no. 1: 30. https://doi.org/10.3390/lubricants13010030
APA StyleChen, Y., Li, C., Wang, X., Zhang, L., Tan, X., Peng, Y., & Xu, X. (2025). Preparation and Tribological Performance of the Ag/BN Nanocomposite as Additives for Lithium-Based Grease. Lubricants, 13(1), 30. https://doi.org/10.3390/lubricants13010030