Lubricating Performance of Lanzhou Lily Crude Extract as Natural Additive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of LLCE and PEG400-LLCE Lubricants
2.2. Physiochemical Tests
2.3. Tribology Tests
3. Results and Discussion
3.1. Thermal Stability
3.2. Viscosity and Viscosity Index
3.3. Lubrication Behaviors and Mechanisms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Liu, H.; Xie, M.; Pan, B.; Li, N.; Zhang, J.; Lu, M.; Luo, J.; Wang, H. In-situ intercalated pyrolytic graphene/serpentine hybrid as an efficient lubricant additive in paraffin oil. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129929. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, R.; Yang, S.; Liu, T.; Yi, C.; Zhang, Y.; Jia, D. Evaluation of anti-wear properties of different vegetable oils based on QSPR model. Tribol. Lett. 2023, 71, 35. [Google Scholar] [CrossRef]
- Bahari, A.; Lewis, R.; Slatter, T. Friction and wear response of vegetable oils and their blends with mineral engine oil in a reciprocating sliding contact at severe contact conditions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2017, 232, 244–258. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Masjuki, H.H.; Kalam, M.A.; Bhuiya, M.M.K.; Mehat, H. Comparative tribological investigation of bio-lubricant formulated from a non-edible oil source (jatropha oil). Ind. Crops Prod. 2013, 47, 323–330. [Google Scholar] [CrossRef]
- Jabal, M.H.; Khalefa, M.Z. Tribological characteristics evaluation of mustard oil blends. J. Eng. 2018, 24, 1–12. [Google Scholar] [CrossRef]
- Farfán-Cabrera, L.I.; Gallardo-Hernández, E.A.; Vite-Torres, M.; Laguna-Camacho, J.R. Frictional behavior of a wet clutch using blends of automatic transmission fluid (atf) and biolubricant (jatropha oil) in a pin-on-disk tester. Tribol. Trans. 2015, 58, 941–946. [Google Scholar] [CrossRef]
- Garlapati, V.K.; Mohapatra, S.B.; Mohanty, R.C.; Das, P. Transesterified olax scandens oil as a bio-additive: Production and engine performance studies. Tribol. Int. 2021, 153, 106653. [Google Scholar] [CrossRef]
- Lee, C.T.; Lee, M.B.; Hamdan, S.H.; Chong, W.W.F.; Chong, C.T.; Zhang, H.; Chen, A.W.L. Trimethylolpropane trioleate as eco-friendly lubricant additive. Eng. Sci. Technol. Int. J. 2022, 35, 101068. [Google Scholar] [CrossRef]
- Chen, C.; Xia, Y.; Cao, Z. Brasenia schreberi mucilage as a green lubricant additive exhibiting good tribological properties for steel/steel and steel/aluminium friction pairs. Mater. Res. Express 2022, 9, 025503. [Google Scholar] [CrossRef]
- Kumar, S.A.; Suresh, G.; Hariprasad, V.; Deepak, G.S.; Akhil, P.S. Enhancement of oxidative stability and cold flow properties of coconut oil using natural antioxidant additives for development of bio-lubricant. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020, 235, 758–764. [Google Scholar] [CrossRef]
- Jumat Salimon, N.S.E.Y. Biolubricants raw materials chemical modifications and environmental benefits. Eur. J. Lipid Sci. Tech. 2010, 112, 519–530. [Google Scholar] [CrossRef]
- Joshi, J.R.; Bhanderi, K.K.; Patel, J.V. Waste cooking oil as a promising source for bio lubricants—A review. J. Indian Chem. Soc. 2023, 100, 100820. [Google Scholar] [CrossRef]
- Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef]
- Wu, Z.; Thoresen, P.P.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Shi, Y. Facile synthesis of lignin-castor oil-based oleogels as green lubricating greases with excellent lubricating and antioxidation properties. ACS Sustain. Chem. Eng. 2023, 11, 12552–12561. [Google Scholar] [CrossRef]
- Xie, M.; Luo, Y.; Gao, T.; Li, R. Investigation on the lubrication component and mechanism for a biolubricant isolated from the agro-waste resource of codonopsis pilosula. Sci. Total Environ. 2023, 902, 166014. [Google Scholar] [CrossRef]
- Xie, M.; Tan, H.; Zhao, G. A clean and sustainable strategy to produce bio-lubricant with high-bearing and good anti-oxidation ability from lanzhou lily. J. Clean. Prod. 2022, 371, 133333. [Google Scholar] [CrossRef]
- GBT 265-1988; Petroleum Products—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity. National Standards of the People’s Republic of China. Standards Press of China Beijing: Beijing, China, 1988.
- GBT 2541-1981; Petroleum Products—Computation Table for Viscosity Indices. National Standards of the People’s Republic of China. Standards Press of China Beijing: Beijing, China, 1981.
- GBT 2540-1981; Petroleum Products—Determination of Density by Pycnometer. National Standards of the People’s Republic of China. Sinopec Research Institute of Petroleum Processing Co., LTD.: Beijing, China, 1981.
- Sapawe, N.; Samion, S.; Zulhanafi, P.; Nor Azwadi, C.S.; Hanafi, M.F. Effect of addition of tertiary-butyl hydroquinone into palm oil to reduce wear and friction using four-ball tribotester. Tribol. Trans. 2016, 59, 883–888. [Google Scholar] [CrossRef]
- Manzoor, S.; Masoodi, F.A.; Rashid, R.; Dar, M.M. Improving oxidative stability of soyabean oil by apple pomace extract during deep frying of french fries. Food Biosci. 2022, 49, 101874. [Google Scholar] [CrossRef]
- Ruggiero, A.; D’Amato, R.; Merola, M.; Valašek, P.; Müller, M. Tribological characterization of vegetal lubricants: Comparative experimental investigation on jatropha curcas l. Oil, rapeseed methyl ester oil, hydrotreated rapeseed oil. Tribol. Int. 2017, 109, 529–540. [Google Scholar] [CrossRef]
- Hoong, S.S.; Arniza, M.Z.; Mariam, N.M.D.N.S.; Armylisas, A.H.N.; Yeong, S.K. Synthesis and physicochemical properties of novel lauric acid capped estolide esters and amides made from oleic acid and their evaluations for biolubricant basestock. Ind. Crops Prod. 2019, 140, 111653. [Google Scholar] [CrossRef]
- Ding, J.H.; Fang, J.H.; Chen, B.S.; Zhang, N.; Fan, X.Y.; Zheng, Z. Effect of oleic acid tris-(2-hydroxyethyl) isocyanurate phosphate ester on biodegradability and tribological performance of mineral lubricating oil. China Pet. Process. Petrochem. Technol. 2018, 20, 7. [Google Scholar]
- Li, W.; Jiang, C.; Chao, M.; Wang, X. Natural garlic oil as a high-performance, environmentally friendly, extreme pressure additive in lubricating oils. ACS Sustain. Chem. Eng. 2014, 2, 798–803. [Google Scholar] [CrossRef]
- Kurre, S.K.; Yadav, J. A review on bio-based feedstock, synthesis, and chemical modification to enhance tribological properties of biolubricants. Ind. Crops Prod. 2023, 193, 116122. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, X.; Guo, Z.; Cai, M.; Shi, L. Effective sugar-derived organic gelator for three different types of lubricant oils to improve tribological performance. Friction 2019, 8, 1025–1038. [Google Scholar] [CrossRef]
- Lv, S.; Chen, T.; Wang, T.; Li, Y.; Gao, X. Friction-reducing properties of n-containing ionic liquid additives by using quantitative structure tribo-ability relationship model. J. Dispers. Sci. Technol. 2020, 43, 620–627. [Google Scholar] [CrossRef]
- Song, W.; Zhang, J.; Campen, S.; Yan, J.; Ji, H.; Wong, J.S.S. Lubrication mechanism of a strong tribofilm by imidazolium ionic liquid. Friction 2022, 11, 425–440. [Google Scholar] [CrossRef]
- Wen, P.; Yan, Q.; Dong, R.; Han, Y.; Fang, R.; Fan, M. Interactions balancing competition and cooperation between covalent-organic framework additives and peg base oil toward advanced lubrication. ACS Appl. Mater. Interfaces 2022, 14, 51476–51486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, W.; Ma, X.; Fan, X.; Zhu, M. Solvent-free carbon sphere nanofluids towards intelligent lubrication regulation. Friction 2023, 12, 95–109. [Google Scholar] [CrossRef]
- Wei, D.Q.; Dong, R.; Xu, H.Z.; Wang, X.G.; Liu, X.; Liang, Y.; Zhang, M.; Ma, Z.; Yu, Q.; Cai, M.; et al. Superior lubricity and corrosion-resistance response of solvated ionic liquids containing lithium and borate. Tribol. Int. 2023, 184, 108430. [Google Scholar] [CrossRef]
PEG400 | PEG400-5 wt.% LLCE | PEG400-7 wt.% LLCE | PEG400-10 wt.% LLCE | ||
---|---|---|---|---|---|
25 °C | η (mPa·s) | 103.4 | 112.0 | 122.4 | 143.5 |
cSt (mm2/s) | 91.8 | 101.0 | 110.8 | 130.1 | |
40 °C | η (mPa·s) | 47.5 | 53.2 | 54.0 | 63.9 |
cSt (mm2/s) | 42.2 | 48.0 | 48.9 | 58.0 | |
100 °C | η (mPa·s) | 7.5 | 10.6 | 11.2 | 10.7 |
cSt (mm2/s) | 6.7 | 9.6 | 10.1 | 9.7 | |
Viscosity index | 113 | 190 | 200 | 152 | |
Density | 1.126 | 1.109 | 1.105 | 1.103 |
Lubricants | Friction Coefficient | Wear Volume/10−5 mm3 | ||
---|---|---|---|---|
Steel-steel friction pairs, 100 N, 25 Hz [27] | PEG400 | 0.133 | 16 | |
2–5 wt.% NOG | 0.115–0.120 | 2–5 | ||
Steel 52100 pairs, 25 °C, 98 N [28] | PEG 400 | 0.1101 | -- | |
1 wt.% N-containing heterocyclic ionic liquid | 0.0604–0.1985 | -- | ||
Steel-steel contacts, 40 °C, 7.92 N [29] | PEG400 | 0.11 | -- | |
1–5 wt.% Imidazolium ionic liquid (ImIL) | 0.09–0.083 | -- | ||
AISI 52100 pairs, 100 N, 25 Hz, 25 °C [30] | PEG400 | 0.14 | 80 | |
0.3–1 wt.%: Ton-COFs and Tol-COFs- PEG400 | 0.08–0.09; 0.10–0.11 | 2–20; 20–70 | ||
Steel balls-GCr15 steel block, 60 N [31] | PEG 400 | 0.123 | 4.4 | |
0.5–10.0 wt.% C-NFs | 0.116–0.107 | 2.2–3.3 | ||
AISI 52100-AISI 52100, 200 N [32] | PEG400 | 0.16 | 393.4 | |
3 wt.% LiBOB | 0.11 | 15.6 | ||
this work | PEG400 | 50 N | 0.133 | 31.4 |
100 N | 0.137 | 63.7 | ||
150 N | 0.140 | 94.2 | ||
5–7 wt.% LLCE | 50 N | 0.095–0.110 | 2.6–13.1 | |
100 N | 0.124–0.133 | 31.7–50.4 | ||
150 N | 0.124–0.131 | 44.4–56.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Lai, C.; Chen, J.; Cao, F.; Ma, Y. Lubricating Performance of Lanzhou Lily Crude Extract as Natural Additive. Lubricants 2025, 13, 34. https://doi.org/10.3390/lubricants13010034
Xie M, Lai C, Chen J, Cao F, Ma Y. Lubricating Performance of Lanzhou Lily Crude Extract as Natural Additive. Lubricants. 2025; 13(1):34. https://doi.org/10.3390/lubricants13010034
Chicago/Turabian StyleXie, Min, Chenghua Lai, Juanjuan Chen, Feng Cao, and Ying Ma. 2025. "Lubricating Performance of Lanzhou Lily Crude Extract as Natural Additive" Lubricants 13, no. 1: 34. https://doi.org/10.3390/lubricants13010034
APA StyleXie, M., Lai, C., Chen, J., Cao, F., & Ma, Y. (2025). Lubricating Performance of Lanzhou Lily Crude Extract as Natural Additive. Lubricants, 13(1), 34. https://doi.org/10.3390/lubricants13010034