Formation of Anti-Wear Tribofilms via α-ZrP Nanoplatelet as Lubricant Additives
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Tribological Evaluation
2.3. Characterization
3. Results and Discussion
3.1. Friction and Wear
3.2. Tribofilm Formation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wills, J.G. Lubrication Fundamentals; Marcel Dekker Inc.: New York, NY, USA, 1980. [Google Scholar]
- Spikes, H. The History and Mechanisms of ZDDP. Tribol. Lett. 2004, 17, 469–489. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Baik, S.-I.; Bertolucci-Coelho, L.; Mazzaferro, L.; Ramirez, G.; Erdermir, A.; Seidman, D.N. Atom-Probe Tomography of Tribological Boundary Films Resulting from Boron-Based Oil Additives; Scripta Materialia: Columbus, OH, USA, 2015. [Google Scholar]
- Ma, H.B.; Li, J.; Chen, H.; Zuo, G.Z.; Yu, Y.; Ren, T.H.; Zhao, Y.D. XPS and XANES characteristics of tribofilms and thermal films generated by two P- and/or S-containing additives in water-based lubricant. Tribol. Int. 2009, 42, 940–945. [Google Scholar] [CrossRef]
- Zhou, S.G.; Wang, L.P.; Xue, Q.J. Controlling friction and wear of nc-WC/a-C(Al) nanocomposite coating by lubricant/additive synergies. Surf. Coat. Technol. 2012, 206, 2698–2705. [Google Scholar] [CrossRef]
- Nan, F.; Xu, Y.; Xu, B.S.; Gao, F.; Wu, Y.X.; Tang, X.H. Effect of natural attapulgite powders as lubrication additive on the friction and wear performance of a steel tribo-pair. Appl. Surf. Sci. 2014, 307, 86–91. [Google Scholar] [CrossRef]
- Cai, Z.-B.; Meyer, H.M., III; Ma, C.; Chi, M.; Luo, H.; Qu, J. Comparison of the tribological behavior of steel–steel and Si3N4–steel contacts in lubricants with ZDDP or ionic liquid. Wear 2014, 319, 172–183. [Google Scholar] [CrossRef]
- Fan, K.Z.; Li, J.; Ma, H.B.; Wu, H.; Ren, T.H.; Kasrai, M.; Bancroft, G.M. Tribological characteristics of ashless dithiocarbamate derivatives and their combinations with ZDDP as additives in mineral oil. Tribol. Int. 2008, 41, 1226–1231. [Google Scholar] [CrossRef]
- Totolin, V.; Minami, I.; Gabler, C.; Doorr, N. Halogen-free borate ionic liquids as novel lubricants for tribological applications. Tribol. Int. 2013, 67, 191–198. [Google Scholar] [CrossRef]
- Rabaso, P.; Ville, F.; Dassenoy, F.; Diaby, M.; Afanasiev, P.; Cavoret, J.; Vacher, B.; Le Mogne, T. Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 2014, 320, 161–178. [Google Scholar] [CrossRef]
- Burkinshaw, M.; Neville, A.; Morina, A.; Sutton, M. The lubrication of both aluminium-silicon and model silicon surfaces with calcium sulphonate and an organic antiwear additive. Tribol. Int. 2013, 67, 211–216. [Google Scholar] [CrossRef]
- Wang, S.; Yue, W.; Fu, Z.Q.; Wang, C.B.; Li, X.L.; Liu, J.J. Study on the tribological properties of plasma nitrided bearing steel under lubrication with borate ester additive. Tribol. Int. 2013, 66, 259–264. [Google Scholar] [CrossRef]
- Yu, H.L.; Xu, Y.; Shi, P.J.; Wang, H.M.; Wei, M.; Zhao, K.K.; Xu, B.S. Microstructure, mechanical properties and tribological behavior of tribofilm generated from natural serpentine mineral powders as lubricant additive. Wear 2013, 297, 802–810. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Yan, J.; Ren, T.; Zhao, Y. Tribological behaviours of surface-modified serpentine powder as lubricant additive. Ind. Lubr. Tribol. 2016, 68, 1–8. [Google Scholar] [CrossRef]
- Zhang, B.-S.; Xu, B.-S.; Xu, Y.; Gao, F.; Shi, P.-J.; Wu, Y.-X. CU nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel–steel contacts. Tribol. Int. 2011, 44, 878–886. [Google Scholar] [CrossRef]
- He, X.L.; Xiao, H.P.; Choi, H.H.; Diaz, A.; Mosby, B.; Clearfield, A.; Liang, H. Alpha-Zirconium phosphate nanoplatelets as lubricant additives. Colloid Surf. A 2014, 452, 32–38. [Google Scholar] [CrossRef]
- Xiao, H.P.; Dai, W.; Kan, Y.W.; Clearfield, A.; Liang, H. Amine-intercalated alpha-zirconium phosphates as lubricant additives. Appl. Surf. Sci. 2015, 329, 384–389. [Google Scholar] [CrossRef]
- Sun, L.; Boo, W.J.; Sue, H.-J.; Clearfield, A. Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J. Chem. 2007, 31, 39–43. [Google Scholar] [CrossRef]
- Hamrock, B.J.; Dowson, D. Ball Bearing Lubrication: The Elastohydrodynamics of Elliptical Contacts; John Wiley & Sons: Hoboken, NJ, USA, 1981. [Google Scholar]
- Taylor, L.; Spikes, H. Friction-enhancing properties of ZDDP antiwear additive: Part I—Friction and morphology of ZDDP reaction films. Tribol. Trans. 2003, 46, 303–309. [Google Scholar] [CrossRef]
- Joly-Pottuz, L.; Dassenoy, F.; Belin, M.; Vacher, B.; Martin, J.M.; Fleischer, N. Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 2005, 18, 477–485. [Google Scholar] [CrossRef]
- Pawlak, Z.; Kaldonski, T.; Pai, R.; Bayraktar, E.; Oloyede, A. A comparative study on the tribological behaviour of hexagonal boron nitride (h-BN) as lubricating micro-particles—An additive in porous sliding bearings for a car clutch. Wear 2009, 267, 1198–1202. [Google Scholar] [CrossRef]
- Totolin, V.; Ripoll, M.; Jech, M.; Podgornik, B. Enhanced tribological performance of tungsten carbide functionalized surfaces via in-situ formation of low-friction tribofilms. Tribol. Int. 2016, 94, 269–278. [Google Scholar] [CrossRef]
- Majumdar, D.; Chatterjee, D.; Ghosh, S.; Blanton, T. X-Ray Photoelectron Spectroscopic Studies on Ceramic Composites Containing Yttria-Stabilized Zirconia and Alumina. Appl. Surf. Sci. 1993, 68, 189–195. [Google Scholar] [CrossRef]
- Arfelli, M.; Mattogno, G.; Ferragina, C.; Massucci, M.A. Xps Characterization of Gamma-Zirconium Phosphate and of Some of Its Intercalation Compounds—A Comparison with the Alpha-Zirconium Phosphate Analogs. J. Inclus Phenom. Mol. 1991, 11, 15–27. [Google Scholar] [CrossRef]
- Dai, W.; Kheireddin, B.; Gao, H.; Liang, H. Roles of nanoparticles in oil lubrication. Tribol. Int. 2016, 102, 88–98. [Google Scholar] [CrossRef]
- Martin, J.M. Antiwear mechanisms of zinc dithiophosphate: A chemical hardness approach. Tribol. Lett. 1999, 6, 1–8. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, J.; Wang, J.; Yang, Z.; Liu, S.; Wang, Z.; Yang, S. Preparation of a reduced graphene oxide/zirconia nanocomposite and its application as a novel lubricant oil additive. RSC Adv. 2015, 5, 91802–91812. [Google Scholar] [CrossRef]
Materials | Base Stock | Counterpart | Chemical Composition | Film Thickness | Mechanical Properties | Tribological Performance | Characterization Method | Reference |
---|---|---|---|---|---|---|---|---|
boron based additves | 5W-30 | E52100 | Ca, O, S, B, Cr and ~40 at.% Fe | 15 nm | friction and wear reduction | atom-probe tomography and TEM | [3] | |
Phosphate additives, AD and JD | triethanolamine aqueous solution | GCr15 bearing steel | P is in the form of phosphate or polyphosphate; S mainly exists as FeSO4 and FeS2 | friction and wear reduction | XPS and XANES | [4] | ||
S-based EP additive and MoDTC additive | PAO | nc-WC/a-C(Al) carbon-based nanocomposite coating | WS2 or MoS2 + WS2-containing tribofilm | hardness (H) = 18.3 GPa, elastic modulus (E) = 213.1 GPa, critical load (Lc) = 28 N | Superior low-friction and anti-wear behaviors | XPS and TEM | [5] | |
attapulgite powders (silicate composed of some oxide) | mineral lubricating oil (150SN) | 52100 steel and 1045 steel | FeO, Fe2O3, FeOOH and SiOx | friction and wear reduction | EDS and XPS | [6] | ||
IL [P66614] [DEHP] | Chevron 15W40 and 0W30 | steel–steel and silicon nitride–steel | metal phosphates and oxides | 25 nm | wear reduction | EDS, XPS and TEM | [7] | |
Dithiocarbamate derivative additives | HVI WH150 | GCr15 bearing steel and AISI 52100 steel | organic sulphide, pyrite,sulphite, –SC(=S)–N– part | better antiwear performance and extreme pressure property | XANES | [8] | ||
Halogen-free borate ionic liquids | AISI 52100 steel-steel | phosphate based tribofilm | friction and wear reduction | XPS | [9] | |||
IF-MoS2 | blend of PAO 4 and PAO 40 | AISI 52100 steel-steel | iron oxide and sulfides, MoS2, | 50–100 nm | friction and wear reduction | XPS and FIB | [10] | |
calcium sulphonate | PAO | aluminium–silicon and chromium steel | calcium carbonate and sulphur | wear reduction | ToF-SIMS | [11] | ||
borate ester containing nitrogen | PAO | nitrided AISI 52100 steel | hexagonal BN and B2O3 | friction reduced by 34% and wear reduced by 45% | XPS | [12] | ||
oleic acid-modified serpentine UFPs | mineral base oil (500SN) | GCr15 steel ball and 1045 steel disc | Fe3O4, FeSi, SiO2, AlFe, and Fe3C | 500–600 nm | hardness = 8 GPa within 100 nm, modulus = 240 GPa within 100 nm | friction and wear reduction | EDS, TEM | [13] |
serpentine powder | 5-CST oil | GCr15 bearing steel | iron oxides, silicon oxides, magnesium oxides and organic compounds | friction and wear reduction | XPS and XANES | [14] | ||
Cu nanoparticles and hydrosilicate powders | diesel oil | Ball AISI 52100 and Disk AISI 1045 | iron oxides, silicon oxides, Si–O species, graphite, organic compounds, Cu species | friction and wear reduction | EDS and XPS | [15] |
Roughness Parameter | Base Oil | Base Oil + ZDDP | Base Oil + α-ZrP-ODI |
---|---|---|---|
Roughness Avg. (Sa) | 271.03 nm | 81.47 nm | 40.89 nm |
Root mean square (Sq) | 315.73 nm | 97.56 nm | 59.02 nm |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, W.; Kheireddin, B.; Gao, H.; Kan, Y.; Clearfield, A.; Liang, H. Formation of Anti-Wear Tribofilms via α-ZrP Nanoplatelet as Lubricant Additives. Lubricants 2016, 4, 28. https://doi.org/10.3390/lubricants4030028
Dai W, Kheireddin B, Gao H, Kan Y, Clearfield A, Liang H. Formation of Anti-Wear Tribofilms via α-ZrP Nanoplatelet as Lubricant Additives. Lubricants. 2016; 4(3):28. https://doi.org/10.3390/lubricants4030028
Chicago/Turabian StyleDai, Wei, Bassem Kheireddin, Hong Gao, Yuwei Kan, Abraham Clearfield, and Hong Liang. 2016. "Formation of Anti-Wear Tribofilms via α-ZrP Nanoplatelet as Lubricant Additives" Lubricants 4, no. 3: 28. https://doi.org/10.3390/lubricants4030028
APA StyleDai, W., Kheireddin, B., Gao, H., Kan, Y., Clearfield, A., & Liang, H. (2016). Formation of Anti-Wear Tribofilms via α-ZrP Nanoplatelet as Lubricant Additives. Lubricants, 4(3), 28. https://doi.org/10.3390/lubricants4030028