Effect of Plastic Deformation and Damage Development during Friction of fcc Metals in the Conditions of Boundary Lubrication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Friction and Wear Tests due to Acoustic Emission (AE) Measurements
2.2. The Analysis of the Deformation Structure after Friction of Four Fcc Metals
3. Results
3.1. Friction and Wear
3.2. Analysis of Acoustic Emission in the Transition from EHL to BL Conditions
3.3. Deformed Structure of Studied fcc Metals after Friction in the BL Region
3.4. Damage Development during Friction in the BL Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vakis, A.; Yastrebov, V.; Scheibert, J.; Nicola, L.; Dini, D.; Minfray, C.; Almqvist, A.; Paggi, M.; Lee, S.; Limbert, G.; et al. Modeling and simulation in tribology across scales: An overview. Tribol. Int. 2018, 125, 169–199. [Google Scholar] [CrossRef]
- Rigney, D. On the mechanical properties of near-surface material in friction and wear. In Fundamental of Tribology, Proceedings of International Conference on the Fundamentals of Tribology; Suh, N., Saka, N., Eds.; The MIT Press: Cambridge, MA, USA, 1978; pp. 119–126. [Google Scholar]
- Heilmann, P.; Rigney, D. Runnig-in process affecting friction and wear. In The Running–in Process in Tribology, Proceedings 8th Leeds–Lyon Symposium on Tribology; Dowson, D., Taylor, C., Godet, M., Berthe, D., Eds.; Butterworth-Heinemann Ltd.: Oxford, UK, 1981; pp. 25–33. [Google Scholar]
- Hirth, J.; Rigney, D. Crystal plasticity and the delamination theory of wear. Wear 1976, 39, 133–141. [Google Scholar] [CrossRef]
- Hirth, J.; Rigney, D. The application of dislocation conceptions in Friction and Wear. In Dislocations in Solids; Nabarro, F., Ed.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 1–54. [Google Scholar]
- Garbar, I. Structure-based selection of wear-resistant materials. Wear 1995, 181–183, 50–55. [Google Scholar] [CrossRef]
- Garbar, I. Fragmentation of low-carbon steel and copper surface layers during fatigue and adhesive wear. Wear 1986, 7, 1043–1053. [Google Scholar]
- Kulhmann-Wilsdorf, D. Dislocation concepts in friction and wear. In Fundamentals of Friction and Wear of Materials; Rigney, D., Ed.; American Society of Metals, Ohio, Metals Park: Novelty, OH, USA, 1980; pp. 119–186. [Google Scholar]
- Rapoport, L.; Rybakova, L. The influence of surface layer structure state on friction and wear processes (in Russian). Frict. Wear (Trenie i Iznos Mash) 1987, 8. part I, 888–894, part II, 1038–1043. [Google Scholar]
- Alpas, A.; Hu, H.; Zhang, J. Plastic deformation and damage accumulation below the worn surfaces. Wear 1993, 162–164, 188–195. [Google Scholar] [CrossRef]
- Rainforth, W.; Stevens, R.; Nutting, J. Deformation structures induced by sliding contact. Phylos. Mag. 1992, 66, 621–641. [Google Scholar] [CrossRef]
- Rigney, D.; Fu, X.; Hammerberg, J.; Holian, B.; Falk, M. Examples of structural evolution during sliding and shear of ductile materials. Scr. Mater. 2003, 49, 977–983. [Google Scholar] [CrossRef]
- Walker, J.; Ross, I.; Rainforth, W.; Lieblich, M. TEM characterisation of near surface deformation resulting from lubricated sliding wear of aluminium alloy and composites. Wear 2007, 263, 707–718. [Google Scholar] [CrossRef] [Green Version]
- Moshkovich, A.; Perfilyev, V.; Bendikov, T.; Lapsker, I.; Cohen, H.; Rapoport, L. Structural evolution in copper layers during sliding under different lubricant conditions. Acta Mater. 2010, 58, 4685–4692. [Google Scholar] [CrossRef]
- Meshi, L.; Samuha, S.; Cohen, S.; Laikhtman, A.; Moshkovich, A.; Perfilyev, V.; Lapsker, I.; Rapoport, L. Dislocation structure and hardness of surface layers under friction of copper in different lubricant conditions. Acta Mater. 2011, 59, 342–348. [Google Scholar] [CrossRef]
- Shockley, J.; Rauch, E.; Chromik, R.; Descartes, S. TEM microanalysis of interfacial structures after dry sliding of cold sprayed Al–Al2O3. Wear 2017, 376–377, 1411–1417. [Google Scholar] [CrossRef]
- Agribay, N.; Chandross, M.; Cheng, S.; Michael, J. Linking microstructural evolution and macroscale friction behavior in metals. J. Mater. Sci. 2017, 52, 2780–2799. [Google Scholar]
- Feltner, C.; Laird, C. Cyclic stress–strain response of FCC metals and alloys—I phenomenological experiments. Acta Metall. 1967, 15, 1621–1632. [Google Scholar] [CrossRef]
- Mughrabi, H.; Hezz, K.; Stark, X. Cyclic deformation and fatigue behaviour of α-iron mono-and-polycrystals. Int. J. Fract. 1981, 17, 193–220. [Google Scholar] [CrossRef]
- Laird, C. The applications of dislocation concepts in fatigue. In Dislocations in Solids; Nabarro, F., Ed.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 55–120. [Google Scholar]
- Merkle, A.; Marks, L. A predictive analytical friction model from basic theories of interfaces, contacts and dislocations. Tribol. Lett. 2007, 26, 73–84. [Google Scholar] [CrossRef]
- M’ndange-Pfupfu, A.; Marks, L. A dislocation-based analytical model for the nanoscale processes of shear and plowing friction. Tribol. Lett. 2010, 39, 163–167. [Google Scholar] [CrossRef]
- Sun, F.; Vander Giessen, E.; Nicola, L. Plastic flattening of a sinusoidal metal surface: A discrete dislocation plasticity study. Wear 2012, 296, 672–680. [Google Scholar] [CrossRef] [Green Version]
- Gagel, J.; Weygand, D.; Gumbsch, P. Discrete dislocation dynamics simulations of dislocation transport during sliding. Acta Mater. 2018, 156, 215–227. [Google Scholar] [CrossRef]
- Kong, X.; Liu, Y.; Qiao, L. Dry sliding tribological behaviors of nanocrystalline Cu–Zn surface layer after annealing in air. Wear 2004, 256, 747–753. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Z.; Wang, K.; Lu, K. Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 2006, 260, 942–948. [Google Scholar] [CrossRef]
- Kato, H.; Sasase, M.; Suiya, N. Friction-induced ultra-fine and nanocrystalline structures on metal surfaces in dry sliding. Tribol. Int. 2010, 43, 925–928. [Google Scholar] [CrossRef]
- Yao, B.; Han, Z.; Li, Y.; Tao, N.; Lu, K. Dry sliding tribological properties of nanostructured copper subjected to dynamic plastic deformation. Wear 2011, 271, 1609–1616. [Google Scholar] [CrossRef]
- Moshkovich, A.; Perfilyev, V.; Gorni, D.; Lapsker, I.; Rapoport, L. The effect of Cu grain size on transition from EHL to BL regime (Stribeck curve). Wear 2011, 271, 1726–1732. [Google Scholar] [CrossRef]
- Wasekar, N.; Haridoss, P.; Seshadri, S.; Sundararajan, G. Sliding wear behavior of nanocrystalline nickel coatings: Influence of grain size. Wear 2012, 296, 536–546. [Google Scholar] [CrossRef]
- Filippov, A.; Tarasov, S.; Fortuna, S.; Podgornykh, O.; Shamarin, N.; Rubtsov, V. Microstructural, mechanical and acoustic emission-assisted wear characterization of equal channel angular pressed (ECAP) low stacking fault energy brass. Tribol. Int. 2018, 123, 273–285. [Google Scholar] [CrossRef]
- Figueroa, C.; Schouwenaars, R.; Cortés-Péreza, J.; Petrov, R.; Kestens, L. Ultrafine gradient microstructure induced by severe plastic deformation under sliding contact conditions in copper. Mater. Charact. 2018, 138, 263–273. [Google Scholar] [CrossRef]
- Valiev, R.; Estrin, Y.; Horita, Z.; Langdon, T.; Zechetbauer, M.; Zhu, Y. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 2006, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.; Islamgaliev, R.; Alexandrov, I. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Zhilyaev, A.; Langdon, T. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 2008, 53, 893–979. [Google Scholar] [CrossRef]
- Edalati, K.; Horita, Z. High pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy of grain size and correlation with hardness. Acta Mater. 2011, 59, 6831–6836. [Google Scholar] [CrossRef]
- Mishra, A.; Kad, B.; Gregori, F.; Meyers, M. Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta Mater. 2007, 55, 13–28. [Google Scholar] [CrossRef]
- Gubicza, J.; Chinh, N.; Csanadi, T.; Langdon, T.; Ungar, T. Microstructure and strength of severely deformed fcc metals. Mater. Sci. Eng. 2007, A462, 86–90. [Google Scholar] [CrossRef]
- Brown, T.; Saldana, C.; Murthy, T.; Mann, J.; Guo, Y.; Allard, L.; King, A.; Compton, W.; Trumble, K.; Chandrasekar, S. A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper. Acta Mater. 2009, 57, 5491–5500. [Google Scholar] [CrossRef]
- Mei, Q.; Tsuchiya, K.; Gao, H. Different stages in the continuous microstructural evolution of copper deformed to ultrahigh plastic strains. Scr. Mater. 2012, 67, 1003–1006. [Google Scholar] [CrossRef]
- Starink, M.; Qiao, X.; Zhang, J.; Gao, N. Predicting grain refinement by cold severe plastic deformation in alloys using volume averaged dislocation generation. Acta Mater. 2009, 57, 5796–5811. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; An, X.; Zhang, Z.; Wu, S.; Li, S.; Zhang, Z.; Figueiredo, R.; Gao, N.; Langdon, T. Optimizing strength and ductility of Cu–Zn alloys through severe plastic deformation. Scr. Mater. 2012, 67, 871–874. [Google Scholar] [CrossRef]
- Franklin, F.; Widiyart, I.; Kapoor, A. Computer simulation of wear and rolling contact fatigue. Wear 2001, 251, 949–955. [Google Scholar] [CrossRef]
- Widiyarta, I.; Franklin, F.; Kapoor, A. Modelling thermal effects in ratcheting-led wear and rolling contact fatigue. Wear 2008, 265, 1325–1331. [Google Scholar] [CrossRef]
- Bohera, C.; Barrau, O.; Gras, R.; Rezai-Aria, F. A wear model based on cumulative cyclic plastic straining. Wear 2009, 267, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, P.; Sista, B.; Vemaganti, K. A Computational study of the effects of strain hardening in micro-asperity friction models. Tribol. Lett. 2017, 65, 154. [Google Scholar] [CrossRef]
- Archard, J. Elastic deformation and the laws of friction. Proc. R. Soc. Lond. Ser. A 1957, 243, 190–205. [Google Scholar]
- Johnson, K.L.; Greenwood, J.; Higginson, J. The contact of elastic regular wavy surfaces. Int. J. Mech. Sci. 1985, 27, 383–396. [Google Scholar] [CrossRef]
- Chang, W.; Etsion, I.; Bogy, D. An elastic–plastic model for the contact of rough surfaces. ASME J. Tribol. 1987, 109, 257–263. [Google Scholar] [CrossRef]
- Majumdar, A.; Bhushan, B. Fractal model of elastic–plastic contact between rough surfaces. ASME J. Tribol. 1991, 113, 1–11. [Google Scholar] [CrossRef]
- Kogut, L.; Etsion, I. A finite element based elastic–plastic model for the contact of rough surfaces. Tribol. Trans. 2003, 46, 383–390. [Google Scholar] [CrossRef]
- Jackson, R.; Green, I. A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol. Int. 2006, 39, 906–914. [Google Scholar] [CrossRef]
- Jackson, R.; Streator, J. A multi-scale model for contact between rough surfaces. Wear 2006, 261, 1337–1347. [Google Scholar] [CrossRef]
- Kragelsky, I. Friction and Wear; Butterworths: London, UK, 1965. [Google Scholar]
- Persson, B. Sliding Friction; Springer: Berlin, Germany, 2000. [Google Scholar]
- Rapoport, L. Steady friction state and contact models of asperity interaction. Wear 2009, 267, 1305–1310. [Google Scholar] [CrossRef]
- Lim, S.; Ashby, M. Wear-mechanism maps. Acta Metall. 1987, 35, 1–24. [Google Scholar] [CrossRef]
- Ashby, M.; Lim, S. Wear-mechanism maps. Scripta Metall. 1990, 24, 805–810. [Google Scholar] [CrossRef]
- Williams, J. Wear modeling: Analytical, computational and mapping: A continuum mechanics approach. Wear 1999, 225, 1–17. [Google Scholar] [CrossRef]
- Williams, J. Wear and wear particles—some fundamentals. Tribol. Int. 2005, 38, 863–870. [Google Scholar] [CrossRef]
- Rapoport, L. The competing wear mechanisms and wear maps for steels. Wear 1995, 181–183, 280–289. [Google Scholar] [CrossRef]
- Larsson, R. Modelling the effect of surface roughness on lubrication in all regimes. Tribol. Int. 2009, 42, 512–516. [Google Scholar] [CrossRef]
- Bonaventure, J.; Cayer-Barrioz, J.; Mazuyer, D. Transition between mixed lubrication and elastohydrodynamic lubrication with randomly rough surfaces. Tribol. Lett. 2016, 64, 44. [Google Scholar] [CrossRef]
- Wang, W.; Liu, K.; Jiao, M. Thermal and non-Newtonian analysis on mixed liquid–solid lubrication. Tribol. Int. 2007, 40, 1067–1074. [Google Scholar] [CrossRef]
- Wang, W.; Chen, H.; Hu, Y.; Wang, H. Effect of surface roughness parameters on mixed lubrication characteristics. Tribol. Int. 2006, 39, 522–527. [Google Scholar] [CrossRef]
- Faraon, C.; Schipper, D. Stribeck curve for starved line contacts. J. Tribol. 2007, 129, 181–187. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Khonsari, M. Effect of surface pattern on Stribeck curve. Tribol. Lett. 2010, 37, 477–486. [Google Scholar] [CrossRef]
- Moshkovich, A.; Perfilyev, V.; Meshi, L.; Samuha, S.; Cohen, S.; Cohen, H.; Laikhtman, A.; Rapoport, L. Friction, wear and structure of Cu samples in the lubricated steady friction state. Tribol. Int. 2012, 46, 154–160. [Google Scholar] [CrossRef]
- Moshkovich, A.; Lapsker, I.; Laikhtman, A.; Perfilyev, V.; Rapoport, L. The failure and damage mechanisms under friction of copper in the EHL and mixed EHL regions. Tribol. Lett. 2013, 51, 57–64. [Google Scholar] [CrossRef]
- Moshkovich, A.; Perfilyev, V.; Lapsker, I.; Feldman, Y.; Rapoport, L. Study of the transition from EHL to BL regions under friction of Ag and Ni. I. Analysis of acoustic emission. Tribol. Int. 2017, 113, 189–196. [Google Scholar] [CrossRef]
- Moshkovich, A.; Lapsker, I.; Feldman, Y.; Rapoport, L. Severe plastic deformation of four FCC metals during friction under lubricated conditions. Wear 2017, 386–387, 49–57. [Google Scholar] [CrossRef]
- Popov, I.; Moshkovich, A.; Cohen, S.; Perfilyev, V.; Vakahy, A.; Rapoport, L. Microstructure and nanohardness of Ag and Ni under friction in boundary lubrication. Wear 2018, 404–405, 62–70. [Google Scholar] [CrossRef]
- Popov, I.; Moshkovich, A.; Bendikov, T.; Rapoport, L. Deformation microstructure and chemical composition of surface layers of Cu and Al under friction in lubricated conditions. Tribol. Lett. 2018, 66, 78. [Google Scholar] [CrossRef]
- Murr, L.E. Interfacial Phenomena in Metals and Alloys; Addison-Wesley: Boston, MA, USA, 1975. [Google Scholar]
- Gallagher, P. The influence of alloying, temperature and related effects on the stacking fault energy. Metall. Trans. 1970, 1, 2429–2461. [Google Scholar]
- An, X.; Wu, S.; Zhang, Z.; Figueiredo, R.; Gao, N.; Langdon, T. Evolution of microstructural homogeneity in copper processed by high-pressure torsion. Scr. Mater. 2010, 63, 560–563. [Google Scholar] [CrossRef]
- Kaschner, G.; Gibeling, J. Evolution of dislocation glide kinetics during cyclic deformation of copper. Acta Mater. 2002, 50, 653–662. [Google Scholar] [CrossRef]
- Hong, S. Cyclic stress-strain response and slip mode modification in fatigue of FCC solid solutions. Scr. Mater. 2001, 44, 995–1001. [Google Scholar] [CrossRef]
- Wang, Y.; Lapovok, R.; Wang, J.; Qi, Y.; Estrin, Y. Thermal behavior of copper processed by ECAP with and without back pressure. Mater. Sci. Eng. A 2015, 628, 21–29. [Google Scholar] [CrossRef]
- Akchurin, A.; Bosman, R.; Lugt, P.; Van Drogen, M. Analysis of wear particles formed in boundary-lubricated sliding contacts. Tribol. Lett. 2016, 63, 16–30. [Google Scholar] [CrossRef]
Material | Ag | Ni | Cu | Al |
---|---|---|---|---|
Ra, μm | 0.145 ± 0.025 | 0.413 ± 0.025 | 0.6 ± 0.2 | 0.27 ± 0.11 |
SFE, γ mJ/m2 [74,75] | Load, N | CoF | Wear coefficient, k | Hardness, Hs, GPa | Grain size, d, nm, XRD | Tavr/Tm | |
---|---|---|---|---|---|---|---|
Al | 166 | 194 ± 34 | 0.16 ± 0.02 | 1.05 × 10−6 | 0.28 ± 0.03 | 440 ± 75 | 0.36 |
Ag | 16 | 223 ± 23 | 0.1 ± 0.02 | 7.05 × 10−7 | 0.78 ± 0.12 | 33 ± 3 | 0.26 |
Cu | 45 | 1273 ± 57 | 0.09 ± 0.01 | 2.99 × 10−7 | 1.5 ± 0.2 | 63 ± 1 | 0.28 |
Ni | 125 | 1820 ± 200 | 0.08 ± 0.02 | 1.88 × 10−8 | 2.63 ± 0.25 | 140 ± 3 | 0.31 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moshkovich, A.; Perfilyev, V.; Rapoport, L. Effect of Plastic Deformation and Damage Development during Friction of fcc Metals in the Conditions of Boundary Lubrication. Lubricants 2019, 7, 45. https://doi.org/10.3390/lubricants7050045
Moshkovich A, Perfilyev V, Rapoport L. Effect of Plastic Deformation and Damage Development during Friction of fcc Metals in the Conditions of Boundary Lubrication. Lubricants. 2019; 7(5):45. https://doi.org/10.3390/lubricants7050045
Chicago/Turabian StyleMoshkovich, Alexey, Vladislav Perfilyev, and Lev Rapoport. 2019. "Effect of Plastic Deformation and Damage Development during Friction of fcc Metals in the Conditions of Boundary Lubrication" Lubricants 7, no. 5: 45. https://doi.org/10.3390/lubricants7050045
APA StyleMoshkovich, A., Perfilyev, V., & Rapoport, L. (2019). Effect of Plastic Deformation and Damage Development during Friction of fcc Metals in the Conditions of Boundary Lubrication. Lubricants, 7(5), 45. https://doi.org/10.3390/lubricants7050045