The Promise of 2D Nanolaminated Materials as Protective Solid-State Lubricants
Funding
Conflicts of Interest
References
- Nieto, A.; Bisht, A.; Lahiri, D.; Zhang, C.; Agarwal, A. Graphene reinforced metal and ceramic matrix composites: A review. Int. Mater. Rev. 2017, 62, 241–302. [Google Scholar] [CrossRef]
- Li, B.; Zhong, W.H. Review on polymer/graphite nanoplatelet nanocomposites. J. Mater. Sci. 2011, 46, 5595–5614. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 2013, 54, 454–459. [Google Scholar] [CrossRef]
- Marchetto, D.; Held, C.; Hausen, F.; Wählisch, F.; Dienwiebel, M.; Bennewitz, R. Friction and Wear on Single-Layer Epitaxial Graphene in Multi-Asperity Contacts. Tribol. Lett. 2012, 48, 77–82. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, S.M.; Oh, Y.S.; Yang, Y.H.; Lim, Y.S.; Yoon, D.H.; Lee, C.; Kim, J.Y.; Ruoff, R.S. Unoxidized Graphene/Alumina Nanocomposite: Fracture- and Wear-Resistance Effects of Graphene on Alumina Matrix. Sci. Rep. 2014, 4, 5176. [Google Scholar] [CrossRef] [PubMed]
- Nieto, A.; Zhao, J.M.; Han, Y.H.; Hwang, K.H.; Schoenung, J.M. Microscale tribological behavior and in vitro biocompatibility of graphene nanoplatelet reinforced alumina. J. Mech. Behav. Biomed. Mater. 2016, 61, 122–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Nieto, A.; Agarwal, A. Ultrathin Graphene Tribofilm Formation During Wear of Al2O3-Graphene Nanoplatelet Composites. Nanomater. Energy 2016, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xie, Y.; Li, K.; Huang, L.; Huang, S.; Zhao, B.; Zheng, X. Microstructure and wear behavior of graphene nanosheets-reinforced zirconia coating. Ceram. Int. 2014, 40, 12821–12829. [Google Scholar] [CrossRef]
- Belmonte, M.; Ramírez, C.; Gonzalez-Julian, J.; Schneider, J.; Miranzo, P.; Osendi, M.I. The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon 2013, 61, 431–435. [Google Scholar] [CrossRef]
- Siddaiah, A.; Kumar, P.; Henderson, A.; Misra, M.; Menezes, P.L. Surface Energy and Tribology of Electrodeposited Ni and Ni–Graphene Coatings on Steel. Lubricants 2019, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Radovic, M.; Barsoum, M.W. MAX phases: Bridging the gap between metals and ceramics. Am. Ceram. Soc. Bull. 2013, 92, 20–27. [Google Scholar]
- Sun, Z.M. Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev. 2011, 56, 143–166. [Google Scholar] [CrossRef]
- Bai, Y.; Sun, N.; Li, N.; Kong, F.; Qi, X.; He, X.; Wang, R.; Zheng, Y. High-temperature mechanical properties and thermal shock behavior of ternary-layered MAB phases Fe2AlB2. Int. J. Refract. Met. Hard Mater. 2019, 80, 151–160. [Google Scholar] [CrossRef]
- Ade, M.; Hillebrecht, H. ChemInform Abstract: Ternary Borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The First Members of the Series (CrB2)nCrAl with n = 1, 2, 3 and a Unifying Concept for Ternary Borides as MAB-Phases. Inorg. Chem. 2015, 46, 6122–6135. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhu, S.; Cheng, J.; Qiao, Z.; Yang, J.; Liu, W. Microstructural, mechanical and tribological properties of Al matrix composites reinforced with Cu coated Ti3AlC2. J. Alloys Compd. 2017, 690, 612–620. [Google Scholar] [CrossRef]
- Gupta, S.; Habib, M.A.; Dunnigan, R.; Kaabouch, N.; Ghosh, S. Synthesis and Characterization of Ti3SiC2 Particulate-Reinforced Novel Zn Matrix Composites. J. Mater. Eng. Perform. 2015, 24, 4071–4076. [Google Scholar] [CrossRef]
- Gupta, S.; Hammann, T.; Johnson, R.; Riyad, M.F. Tribological Behavior of Novel Ti3SiC2 (Natural Nanolaminates)-Reinforced Epoxy Composites during Dry Sliding. Tribol. Trans. 2014, 58, 560–566. [Google Scholar] [CrossRef]
- Mahesh, K.; Balanand, S.; Raimond, R.; Mohamed, A.P.; Ananthakumar, S. Polyaryletherketone polymer nanocomposite engineered with nanolaminated Ti3SiC2 ceramic fillers. Mater. Des. 2014, 63, 360–367. [Google Scholar] [CrossRef]
- Tran, Q.; Fuka, M.; Dey, M.; Gupta, S. Synthesis and Characterization of Novel Ti3SiC2 Reinforced Ni-Matrix Multilayered Composite-Based Solid Lubricants. Lubricants 2019, 7, 110. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto, A. The Promise of 2D Nanolaminated Materials as Protective Solid-State Lubricants. Lubricants 2020, 8, 6. https://doi.org/10.3390/lubricants8010006
Nieto A. The Promise of 2D Nanolaminated Materials as Protective Solid-State Lubricants. Lubricants. 2020; 8(1):6. https://doi.org/10.3390/lubricants8010006
Chicago/Turabian StyleNieto, Andy. 2020. "The Promise of 2D Nanolaminated Materials as Protective Solid-State Lubricants" Lubricants 8, no. 1: 6. https://doi.org/10.3390/lubricants8010006
APA StyleNieto, A. (2020). The Promise of 2D Nanolaminated Materials as Protective Solid-State Lubricants. Lubricants, 8(1), 6. https://doi.org/10.3390/lubricants8010006