The Effect of Addition of Nanoparticles, Especially ZrO2-Based, on Tribological Behavior of Lubricants
Abstract
:1. Introduction
1.1. Degradation Systems of Greases
1.2. The Aggregation and Agglomeration of Nanoparticles Dispersed in Grease
1.3. Factors Affecting the Agglomeration
2. Components of Greases and Their Effect on Grease Properties
2.1. Classification and Thickeners of Greases
- Simple soap—obtained from the reaction of one fatty acid, such as 12-hydroxystearic acid (12 HSA), and a metallic hydroxide, such as lithium hydroxide. The metallic hydroxide defines the thickener type. In the described case, the grease is called ‘simple lithium soap’.
- Mixed soap—obtained from the reaction of a fatty acid with two metallic hydroxides. For example, if the 12 HSA reacted with lithium and calcium hydroxide, it resulted in a mixed Ca/Li soap.
- Complex soap—obtained from the reaction of a fatty acid, such as 12 HSA, with a short chain complexing acid, such azelaic one, conducive to a complex soap. If lithium hydroxide was used, the result was a lithium complex grease. This thickener type has much better high-temperature properties than a simple soap one.
2.2. Characteristics of Lithium Grease
2.3. Additives to Greases
- neutral calcium sulphonates characterized by high thermal stability and ability to inhibition of galvanic corrosion,
- medium base calcium sulphonates with Total Base Number (TBN) in a range (40–50), especially useful as all-purpose rust inhibitor for MoS2 containing lithium greases. They can neutralize organic and inorganic acids.
- ethylenediamide sulphonate, the concentration of which in the lithium grease can reach 2 wt.%.
2.4. Nanoparticles as Additives to the Lubricant
2.4.1. The role of Nanoparticles as Additive to the Oil Lubricant
- micro-ball bearing-like operation between the mating surfaces;
- generation of protective film averting friction and smoothing the rough surface;
- repairing lubricated surface through fulfilling the wear tracks or apertures caused by loss of mass;
- polishing of mating surfaces via nanoparticles-assisted abrasion.
2.4.2. The Role of Nanoparticles as Additives in the Grease
2.4.3. Nanoparticles as Additive to Lithium Grease
2.4.4. Methods of Preparation of ZrO2 Nanoparticles
2.4.5. Agglomeration of ZrO2 Nanoparticles and Methods to Prevent It
2.5. Lubrication Mechanism of Lithium Nanogrease
2.6. Tribological Evaluation of Nanogrease
3. Materials and Methods for Tribological Investigation
3.1. Samples Preparation for Tribological Tests
3.2. Investigation of Friction Coefficient
4. Results
5. Discussion and Conclusions
Funding
Conflicts of Interest
References
- Lugt, M. A Review on Grease Lubrication in Rolling Bearings. Tribol. Trans. 2009, 52, 470–480. [Google Scholar] [CrossRef]
- Barnes, H.A. Thixotropy—A review. J. Non-Newton. Fluid Mech. 1997, 70, 1–33. [Google Scholar] [CrossRef]
- Paszkowski, M.; Olsztynska-Janus, S. Grease thixotropy: Evaluation of grease microstructure change due to shear and relaxation. Ind. Lubr. Tribol. 2014, 66, 223–237. [Google Scholar] [CrossRef]
- Paszkowski, M. Identification of the thixotropy of lithium greases. In Proceedings of the 16th International Colloquium Tribology 2008—Lubricants, Materials and Lubrication Engineering, Stuttgart/Ostfildern, Germany, 15–17 January 2008. Volume: Book of Sunopses. [Google Scholar]
- Cann, M.; Doner, J.P.; Webster, M.N.; Wikstrom, V. Grease Degradation in Rolling Element Bearings. Tribol. Trans. 2001, 44, 399–404. [Google Scholar] [CrossRef]
- Lugt, M. Grease Lubrication in Rolling Bearings; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Cann, M.; Webster, M.N.; Doner, J.P.; Wikstrom, V.; Lugt, P. Grease Degradation in R0F Bearing Tests. Tribol. Trans. 2007, 50, 187–197. [Google Scholar] [CrossRef]
- Rezasoltani, A.; Khonsari, M. On Monitoring Physical and Chemical Degradation and Life Estimation Models for Lubricating Greases. Lubricants 2016, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Guo, D.; Cann, M.; Wan, G.T.Y.; Wen, S. Thermal Oxidation Mechanism of Polyalphaolefin Greases with Lithium Soap and Diurea Thickeners: Effects of the Thickener. Tribol. Trans. 2016, 59, 801–809. [Google Scholar] [CrossRef]
- Rezasoltani, A.; Khonsari, M. Experimental investigation of the chemical degradation of lubricating grease from an energy point of view. Tribol. Int. 2019, 137, 289–302. [Google Scholar] [CrossRef]
- Gurt, A.; Khonsari, M. The Use of Entropy in Modeling the Mechanical Degradation of Grease. Lubricants 2019, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Bosman, R.; Lugt, M. On the Shear Stability of Dry and Water-Contaminated Calcium Sulfonate Complex Lubricating Greases. Tribol. Trans. 2019, 62, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Rezasoltani, A.; Khonsari, M.M. On the Correlation between Mechanical Degradation of Lubricating Grease and Entropy. Tribol. Lett. 2014, 56, 197–204. [Google Scholar] [CrossRef]
- Rezasoltani, A.; Khonsari, M.M. An engineering model to estimate consistency reduction of lubricating grease subjected to mechanical degradation under shear. Tribol. Int. 2016, 103, 465–474. [Google Scholar] [CrossRef]
- Hurley, S.; Cann, P.M.; Spikes, H. Lubrication and Reflow Properties of Thermally Aged Greases. Tribol. Trans. 2000, 43, 221–228. [Google Scholar] [CrossRef]
- Couronne, I.; Vergne, P. Rheological Behavior of Greases: Part II—Effect of Thermal Aging, Correlation with Physico-Chemical Changes. Tribol. Trans. 2000, 43, 788–794. [Google Scholar] [CrossRef]
- Plint, M.; Alliston-Greiner, A. A New Grease Viscometer: A Study of the Influence of Shear on the Properties of Greases. NLGI Spokesm. 1992, 56, 7–15. [Google Scholar]
- Cyriac, F.; Lugt, M.; Bosman, R. Impact of Water on the Rheology of Lubricating Greases. Tribol. Trans. 2016, 59, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Karis, T.E.; Kono, R.N.; Jhon, M.S. Harmonic Analysis in Grease Rheology. J. Appl. Polym. Sci. 2003, 90, 334–343. [Google Scholar] [CrossRef]
- Ide, A.; Asai, Y.; Takayama, A.; Akiyama, M. New Life Prediction Method of the Grease by the Activation Energy. Tribol. Online 2011, 6, 45–49. [Google Scholar] [CrossRef]
- Zhou, Y.; Bosman, R.; Lugt, M. A Master Curve for the Shear Degradation of Lubricating Greases with a Fibrous Structure. Tribol. Trans. 2019, 62, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, J.; Höglund, E. A New Method for Determining the Mechanical Stability of Lubricating Greases. Tribol. Int. 2000, 33, 217–223. [Google Scholar] [CrossRef]
- Salomonsson, L.; Stang, G.; Zhmud, B. Oil/Thickener Interactions and Rheology of Lubricating Greases. Tribol. Trans. 2007, 50, 302–309. [Google Scholar] [CrossRef]
- Liu, J.; Lozano-Perez, S.; Karamched, P.; Holter, J.; Wilkinson, A.J.; Grovenor, C.R.M. Forescattered electron imaging of nanoparticles in scanning electron microscopy. Mater. Sci. 2019, 155, 109814. [Google Scholar] [CrossRef] [Green Version]
- Bondi, A.; Cravath, A.M.; Moore, R.J.; Peterson, W.H. Basic Factors Determining the Structure and Rheology of Lubricating Grease. Inst. Spokesm. 1950, 13, 12–18. [Google Scholar]
- Singera, A.; Barakat, Z.; Mohapatra, S.; Mohapatra, S.S. Chapter 13—Nanoscale Drug-Delivery Systems: In Vitro and In Vivo Characterization. In Nano-Carriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery, 1st ed.; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 395–419. [Google Scholar]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef]
- Maguire, C.M.; Rösslein, M.; Wick, P.; Prina-Mello, A. Characterisation of particles in solution—A perspective on light scattering and comparative technologies. Sci. Technol. Adv. Mater. 2018, 19, 732–745. [Google Scholar] [CrossRef]
- Zimmermann, M.; Ibrom, K.; Jones, G.; Garnweitner, G. Formation of a Dimeric Precursor Intermediate during the Nonaqueous Synthesis of Titanium Dioxide Nanocrystals. ChemNanoMat 2016, 2, 1073–1076. [Google Scholar] [CrossRef]
- Stolzenburg, P.; Freytag, A.; Bigall, N.C.; Garnweitner, G. Fractal growth of ZrO2 nanoparticles induced by synthesis conditions. CrystEngComm 2016, 18, 8396–8405. [Google Scholar] [CrossRef] [Green Version]
- Ninjbadgar, T.; Garnweitner, G.; Börger, A.; Goldenberg, L.M.; Sakhno, O.V.; Stumpe, J. Synthesis of Luminescent ZrO2:Eu3+ Nanoparticles and Their Holographic Sub-Micrometer Patterning in Polymer Composites. Adv. Funct. Mater. 2009, 19, 1819–1825. [Google Scholar] [CrossRef]
- Bilecka, I.; Niederberger, M. New developments in the nonaqueous and/or non-hydrolytic sol−gel synthesis of inorganic nanoparticles. Electrochim. Acta 2010, 55, 7717–7725. [Google Scholar] [CrossRef]
- Elbasuney, S. Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 2017, 409, 438–447. [Google Scholar] [CrossRef]
- Aysan, A.B.; Knejzlík, Z.; Ulbrich, P.; Šoltys, M.; Zadražil, A.; Štěpánek, F. Effect of surface functionalisation on the interaction of iron oxide nanoparticles with polymerase chain reaction. Colloids Surf. B 2017, 153, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Rashid, Z.; Soleimani, M.; Ghahremanzadeh, R.; Vossoughi, M.; Esmaeili, E. Effective surface modification of MnFe2O4@SiO2@PMIDA magnetic nanoparticles for rapid and high-density antibody immobilization. Appl. Surf. Sci. 2017, 426, 1023–1029. [Google Scholar] [CrossRef]
- Kockmann, A.; Hesselbach, J.; Zellmer, S.; Kwade, A.; Garnweitner, G. Facile surface tailoring of metal oxide nanoparticles via a two-step modification approach. RSC Adv. 2015, 5, 60993–60999. [Google Scholar] [CrossRef] [Green Version]
- Cheema, T.; Lichtner, A.; Weichert, C.; Böl, M.; Garnweitner, G. Fabrication of transparent polymer-matrix nanocomposites with enhanced mechanical properties from chemically modified ZrO2 nanoparticles. J. Mater. Sci. 2012, 47, 2665–2674. [Google Scholar] [CrossRef]
- Smoluchowski, M. Mathematical theory of the kinetics of the coagulation of colloidal solutions. Z. Phys. Chem. 1917, 19, 129–135. [Google Scholar]
- Mersmann, A. Crystallization Technology Handbook; Taylor & Francis: Abingdon, UK, 2001. [Google Scholar]
- Zhang, W.; Crittenden, J.; Li, K.; Chen, Y. Attachment Efficiency of Nanoparticle Aggregation in Aqueous Dispersions: Modeling and Experimental Validation. Environ. Sci. Technol. 2012, 46, 7054–7062. [Google Scholar] [CrossRef]
- Axford, S.D.T. Aggregation of colloidal silica: Reaction-limited kernel, stability ratio and distribution moments. J. Chem. Soc. Faraday Trans. 1997, 93, 303–311. [Google Scholar] [CrossRef]
- Hotze, E.M.; Phenrat, T.; Lowry, G.V. Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 2010, 39, 1909–1924. [Google Scholar] [CrossRef] [Green Version]
- Stolzenburg, P.; Hämisch, B.; Richter, S.; Huber, K.; Garnweitner, G. Secondary Particle Formation during the Nonaqueous Synthesis of Metal Oxide Nanocrystals. Langmuir 2018, 34, 12834–12844. [Google Scholar] [CrossRef]
- Rizzuti, A.; Leonelli, C.; Corradi, A.; Caponetti, E.; Martino, D.C.; Nasillo, G.; Saladino, M.L. Structural Characterization of Zirconia Nanoparticles Prepared by Microwave-Hydrothermal Synthesis. J. Dispers. Sci. Technol. 2009, 30, 1511–1516. [Google Scholar] [CrossRef]
- Rodriguez-Devecchis, V.M.; Carbognani Ortega, L.; Scott, C.E.; Pereira-Almao, P. Use of Nanoparticle Tracking Analysis for Particle Size Determination of Dispersed Catalyst in Bitumen and Heavy Oil Fractions. Ind. Eng. Chem. Res. 2015, 54, 9877–9886. [Google Scholar] [CrossRef]
- Jazaa, Y.; Lan, T.; Padalkar, S.; Sundararajan, S. The Effect of Agglomeration Reduction on the Tribological Behavior of WS2 and MoS2 Nanoparticle Additives in the Boundary Lubrication Regime. Lubricants 2018, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Sonali, J.; Sandhyarani, N.; Sajith, V. Tribological properties and stabilization study of surfactant modified MoS2 nanoparticle in 15W40 engine oil. Int. J. Fluid Mech. Mach. 2014, 1, 1–5. [Google Scholar]
- Srivyas, D.; Charoo, M.S. A Review on Tribological Characterization of Lubricants with Nano Additives for Automotive Applications. Tribol. Ind. 2018, 40, 594–623. [Google Scholar] [CrossRef]
- Vasylkiv, O.; Sakka, Y. Synthesis and Colloidal Processing of Zirconia Nanopowder. J. Am. Ceram. Soc. 2001, 84, 2489–2494. [Google Scholar] [CrossRef]
- Danilenko, I.; Konstantinova, T.; Pilipenko, N.; Volkova, G.; Glasunova, V. Estimation of Agglomeration Degree and Nanoparticles Shape of Zirconia Nanopowders. Part. Part. Syst. Charact. 2011, 28, 13–18. [Google Scholar] [CrossRef]
- French, R.A.; Jacobson, A.R.; Kim, B.; Isley, S.L.; Penn, R.L.; Baveye, C. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ. Sci. Technol. 2009, 43, 1354–1359. [Google Scholar] [CrossRef]
- Soloviev, A.; Jensen, H.; Søgaard, E.G.; Kanaev, A.V. Aggregation kinetics of sol-gel process based on titanium tetraisopropoxide. J. Mater. Sci. 2003, 38, 3315–3318. [Google Scholar] [CrossRef]
- Shih, Y.-H.; Liu, W.-S.; Su, Y.-F. Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions. Environ. Toxicol. Chem. 2012, 31, 1693–1698. [Google Scholar] [CrossRef]
- Padovini, D.S.S.; Pontes, D.S.L.; Dalmaschio, C.J.; Pontes, F.M.; Longo, E. Facile synthesis and characterization of ZrO2 nanoparticles prepared by the AOP/hydrothermal route. RSC Adv. 2014, 4, 38484–38490. [Google Scholar] [CrossRef]
- Nafsin, N.; Hasan, M.; Dey, S.; Castro, R. Effect of ammonia on the agglomeration of zirconia nanoparticles during synthesis and sintering by Spark Plasma Sintering. Mater. Lett. 2016, 183, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Azman, N.F.; Syahrullail, S.; Rahim, E.A. Preparation and dispersion stability of graphite nanoparticles in palm oil. J. Tribol. 2018, 19, 132–141. [Google Scholar]
- Moshkovith, A.; Perfiliev, V.; Verdyan, A.; Lapsker, I.; Popovitz-Biro, R.; Tenne, R.; Rapoport, L. Sedimentation of IF-WS2 aggregates and a reproducibility of the tribological data. Tribol. Int. 2007, 40, 117–124. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; He, J.; Xia, X.; Pan, F. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 2016, 93, 63–70. [Google Scholar] [CrossRef]
- Gulzar, M.; Masjuki, H.H.; Varman, M.; Kalam, M.A.; Mufti, R.A.; Zulkifli, N.W.M.; Yunus, R.; Zahid, R. Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribol. Int. 2015, 88, 271–279. [Google Scholar] [CrossRef]
- Kocjan, A.; Logar, M.; Shen, Z. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Sci. Rep. 2017, 7, 2541. [Google Scholar] [CrossRef]
- Wozniak, M.; Siczek, K.; Kubiak, P.; Jozwiak, P.; Siczek, K. Researches on Tie Rod Ends Lubricated by Grease with TiO2 and ZrO2 Nanoparticles. J. Phys. Conf. Ser. 2018, 1033, 012006. [Google Scholar] [CrossRef]
- Thibault, R.; (Contributing Editor). Grease Basics. Efficient Plant. July/August 2009. Available online: https://www.efficientplantmag.com/2009/07/grease-basics/ (accessed on 26 February 2020).
- Thibault, R.; (Contributing Editor). Grease Basics Part II: Selection & Applications. Efficient Plant. September/October 2009. Available online: https://www.efficientplantmag.com/2009/09/grease-basics-part-ii-selection-a-applications/ (accessed on 26 February 2020).
- Mota, V.; Ferreira, L.A. Influence of grease composition on rolling contact wear: Experimental study. Tribol. Int. 2009, 42, 569–574. [Google Scholar] [CrossRef]
- Classification and Characteristics of Grease. KYODO YUSHI Basic Knowledge about Grease. Available online: https://www.kyodoyushi.co.jp/english/knowledge/grease/category/ (accessed on 21 December 2019).
- Wang, L.; Wang, B.; Wang, X.; Liu, W. Tribological investigation of CaF2 nanocrystals as grease additives. Tribol. Int. 2007, 40, 1179–1185. [Google Scholar] [CrossRef]
- Zhao, W.L.G.; Zhao, Q.; Li, W.; Wang, X. Tribological properties of nano-calcium borate as lithium grease additive. Lubr. Sci. 2009, 26, 43–53. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Wang, X.; Liu, W. The preparation of CeF3 nanocluster capped with oleic acid by extraction method and application to lithium grease. Mater. Res. Bull. 2008, 43, 2220–2227. [Google Scholar] [CrossRef]
- Ji, X.; Chen, Y.; Zhao, G. Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease. Tribol. Lett. 2011, 41, 113–119. [Google Scholar] [CrossRef]
- Prakash, E.; Rajaraman, R.R.; Sivakumar, K. Tribological Studies on Nano-CaCO3 Additive Mixed Lubricant. IOSR J. Mech. Civ. Eng. 2014, 6, 68–74. [Google Scholar]
- Liu, D.; Zhang, M.; Zhao, G.; Wang, X. Tribological Behavior of Amorphous and Crystalline Overbased Calcium Sulfonate as Additives in Lithium Complex Grease. Tribol. Lett. 2011, 45, 265–273. [Google Scholar] [CrossRef]
- Mohamed, A.; Khattab, A.; Osman, T.A.; Zaki, M. Influence of Nano Grease Composite on Rheological Behaviour. Int. J. Eng. Res. Appl. 2013, 3, 1126–1131. [Google Scholar]
- Kumar, A. Is Lithium Grease the Best Multi-purpose Grease? Mach. Lubr. 2014, 2, 9. [Google Scholar]
- Canter, N. Feature article: Grease additives: Important contributors not to be overlooked. Tribol. Lubr. Technol. 2012, 68, 28–32, 34–38. [Google Scholar]
- Daniel, R.; Paulus, T. Chapter 11—Introduction to Gate Drives. Lock Gates and Other Closures in Hydraulic Projects; Butterworth-Heinemann: Oxford, UK, 2019; pp. 705–784. [Google Scholar]
- Mang, T.; Dresel, W. Lubricants and Lubrication, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; p. 88. [Google Scholar]
- Stepina, V.; Vesely, V. Lubricants and Special Fluids; Elsevier: Amsterdam, The Netherlands, 1992; p. 703. [Google Scholar]
- Andrew, D.L.; Moore, G.G. Lubricating Grease Containing Alkoxylated Amine Corrosion Inhibitor. EP0903398A2, 24 March 1999. [Google Scholar]
- King Industries, Inc. Lubricant Additives Division: Specialty Additives and Synthetic Base Oils for Industrial & Automotive Lubricants, Greases, Metalworking Fluids and Rust Preventives; King Industries, Inc.: Norwalk, CT, USA, 2012. [Google Scholar]
- Singh, T. Tribochemistry EP Activity Assessment of MoS Complexes in Lithium Base Greases. Adv. Tribol. 2008, 2008, 947543. [Google Scholar] [CrossRef]
- Samy, A.; Ali, W.Y. The effect of tin as solid lubricant dispersing lithium grease in reducing friction coefficient and wear in dusty environments. Metall 2013, 67, 34–39. [Google Scholar]
- Thirumalaikumaran, A. The Tribological Behaviour of Nanoparticles Mixed Lubricating Oil—Review. Int. Res. J. Eng. Technol. IRJET 2017, 04, 3217–3228. [Google Scholar]
- Battez, A.H.; González Rodríguez, R.; Viesca, J.; Fernández, J.E.; Fernandez, J.; Machado, A.; Chou, R.; Riba, J.A. CuO, ZrO2 and ZnO Nanoparticles as Antiwear Additive in Oil Lubricants. Wear 2008, 265, 422–428. [Google Scholar] [CrossRef]
- Battez, A.H.; González, R.; Felgueroso, D.; Fernández, J.E.; del Rocío Fernández, M.; García, M.A.; Peñuelas, I. Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear 2007, 263, 1568–1574. [Google Scholar] [CrossRef]
- Radice, S.; Mischler, S. Lubrication properties of Al2O3 nanoparticles in aqueous suspensions. Tribol. Interface Eng. Ser. 2005, 48, 101–105. [Google Scholar]
- Casado, J.E.; González, A.F.; Huerga, Á.J.D.R.; Rodríguez-Solla, H.; Díaz-García, M.E. Badía-Laíño, R. Unctuous ZrO2 nanoparticles with improved functional attributes as lubricant additives. IOP Publ. Nanotechnol. 2017, 28, 495704. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Afzal, A.; Ramis, M.K. Investigation of physicochemical and tribological properties of TiO2 nano-lubricant oil of different concentrations. Tribol. Finn. J. Tribol. 2017, 35, 6–15. [Google Scholar]
- Yu, R.; Liu, J.; Zhou, Y. Experimental Study on Tribological Property of MoS2 Nanoparticle in Castor Oil. J. Tribol. 2019, 141, 102001. [Google Scholar] [CrossRef]
- Jendrzej, S.; Gökce, B.; Barcikowski, S. Colloidal Stability of Metal Nanoparticles in Engine Oil under Thermal and Mechanical Load. Chem. Eng. Technol. 2017, 40, 1569–1576. [Google Scholar] [CrossRef]
- Hwang, J.; Lee, C.; Choi, Y.; Cheong, S.; Kim, D.; Lee, K.; Lee, J.; Kim, S.H. Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. J. Mech. Sci. Technol. 2011, 25, 2853–2857. [Google Scholar] [CrossRef]
- Joly-Pottuz, L.; Dassenoy, F.; Belin, M.; Vacher, B.; Martin, J.M.; Fleisher, N. Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 2005, 18, 477–485. [Google Scholar] [CrossRef]
- Cizaire, L.; Vacher, B.; Le Mogne, T.; Martin, J.M.; Rapoport, L.; Margolin, A.; Tenne, R. Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 2002, 160, 282–287. [Google Scholar] [CrossRef]
- Joly-Pottuz, L.; Dassenoy, F. Nanolubricants; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 15–92. [Google Scholar]
- Hu, K.; Hu, X.; Xu, Y.; Huang, F.; Liu, J. The effect of morphology on the tribological properties of MoS2 in liquid paraffin. Tribol. Lett. 2010, 40, 155–165. [Google Scholar] [CrossRef]
- Rapoport, L.; Moshkovich, A.; Perfilyev, V.; Laikhtman, A.; Lapsker, I.; Yadgarov, L.; Rosentsveig, R.; Tenne, R. High lubricity of Re-doped fullerene-like MoS2 nanoparticles. Tribol. Lett. 2012, 45, 257–264. [Google Scholar] [CrossRef]
- Yadgarov, L.; Petrone, V.; Rosentsveig, R.; Feldman, Y.; Tenne, R.; Senatore, A. Tribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditions. Wear 2013, 297, 1103–1110. [Google Scholar] [CrossRef]
- Aralihalli, S.; Biswas, S. Grafting of dispersants on MoS2 nanoparticles in base oil lubrication of steel. Tribol. Lett. 2013, 49, 61–76. [Google Scholar] [CrossRef]
- Anand, G.; Saxena, P. A review on graphite and hybrid nano-materials as lubricant additives. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012201. [Google Scholar] [CrossRef] [Green Version]
- Zhornik, V.I.; Ivakhnik, A.V.; Ivakhnik, V.P. Nanocalcite-Based Greases. Nanosci. Technol. Int. J. 2013, 4, 281–288. [Google Scholar] [CrossRef]
- Mohamed, A.; Ali, S.; Osman, T.A.; Kamel, B.M. Development and manufacturing an automated lubrication machine test for nano grease. J. Mater. Res. Technol. 2019. [Google Scholar] [CrossRef]
- Mobasher, A.; Khalil, A.; Khashaba, M.; Osman, T. Effect of MWCNTs/Talc powder nanoparticles on the tribological and thermal conductivity performance of calcium grease. Ind. Lubr. Tribol. 2019, 72, 9–14. [Google Scholar] [CrossRef]
- Younes, H.; Christensen, G.; Groven, L.; Hong, H.; Smith, P. Three dimensional (3D) percolation network structure: Key to form stable carbon nano grease. J. Appl. Res. Technol. 2016, 14, 375–382. [Google Scholar] [CrossRef]
- Hu, E.Z.; Xu, Y.; Hu, K.H.; Hu, X.G. Tribological properties of 3 types of MoS2 additives in different base greases. Lubr. Sci. 2017, 29, 541–555. [Google Scholar] [CrossRef]
- He, Q.; Li, A.; Guo, Y.; Liu, S.; Kong, L.-H. Effect of nanometer silicon dioxide on the frictional behavior of lubricating grease. Nanomater. Nanotechnol. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Osman, T.A.; Khattab, A.; Zaki, M. Tribological Behavior of Carbon Nanotubes as an Additive on Lithium Grease. ASME J. Tribol. 2015, 137, 011801. [Google Scholar] [CrossRef]
- Xia, X.T.; Zhang, Y.P.; Zhang, Y.Z.; Chen, S.C. Influence of ZrO2 Nanoparticle as Additive on Tribological Property of Lithium Grease. Appl. Mech. Mater. 2010, 26–28, 83–87. [Google Scholar] [CrossRef]
- Li, T.; Pan, B.; Wang, C.; Zhang, S.; Huang, S. Effect of eco-friendly carbon microspheres on the tribological behavior of lithium lubricating grease. UPB Sci. Bull. Ser. B 2019, 81, 57–68. [Google Scholar]
- Ashour, M.E.; Osman, T.A.; Khattab, A.; Elshalakny, A.B. Novel Tribological Behavior of Hybrid MWCNTs/MLNGPs as an Additive on Lithium Grease. J. Tribol. 2017, 139, 041801. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X.; He, Y.; Jiang, M.; Zhou, W. Synthesis and tribological properties of graphene-copper nanoparticles composites. China Pet. Process. Petrochem. Technol. 2017, 19, 113–122. [Google Scholar]
- Wang, J.; Guo, X.; He, Y.; Jiang, M.; Guo, W.; Zhang, Y.; Sun, R. Tribological characteristics of graphene as lithium grease additive. China Pet. Process. Petrochem. Technol. 2017, 19, 46–54. [Google Scholar]
- Zheng, B.; Zhou, J.; Jia, X.; He, Q. Friction and wear property of lithium grease contained with copper oxide nanoparticles. Appl. Nanosci. 2019. [Google Scholar] [CrossRef]
- NanoLub® GH-X Lithium EP Grease Additive. NanoMaterials, Ltd. An NIS Corporation. Available online: http://www.apnano.com/products/nanolub-gh-x-lithium-ep-grease-additive/ (accessed on 21 December 2019).
- Zhang, Z.; Liu, W.; Xue, Q. Friction and wear behaviors of the complexes of rare earth hexadecylate as grease additive. Wear 1998, 215, 40–45. [Google Scholar] [CrossRef]
- Piticescu, R.; Monty, C.; Taloi, D.; Motoc, A.; Axinte, S. Hydrothermal synthesis of zirconia nanomaterials. J. Eur. Ceram. Soc. 2001, 21, 2057–2060. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Zhao, F.; Qiu, T. Preparation and tribological properties of Bi nanoparticles as a lithium grease additive. Optoelectron. Adv. Mater. Rapid Commun. 2014, 8, 500–505. [Google Scholar]
- Lu, A.; Niu, W.; Dai, Y.; Xu, H.; Dong, J. Tribological Properties of ZnS(NH2CH2CH2NH2)0.5 and ZnS as Additives in Lithium Grease. Lubricants 2019, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Lan, C.W.; Chen, C.H.; Kao, M.J.; Guo, J.B. Anti-wear and friction properties of nanoparticles as additives in the lithium grease. Int. J. Precis. Eng. Manuf. 2014, 15, 2059–2063. [Google Scholar] [CrossRef]
- Rapoport, L.; Leshchinky, V.; Volovik, Y.; Lvovsky, M.; Nepomnyashchy, O.; Feldman, Y.; Popovitz-Biro, R.; Tenne, R. Modification of contact surfaces by fullerine-like solid lubricant nanoparticles. Surf. Coat. Technol. 2003, 163–164, 405–412. [Google Scholar] [CrossRef]
- Rylski, A.; Siczek, K. Investigation of tribological properties of lithium grease with SiO2 nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2019, 551, 012012. [Google Scholar] [CrossRef]
- Srinivasan, R.; De Angelis, R.J.; Ice, G.; Davis, B.H. Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source. J. Mater. Res. 1991, 6, 1287–1292. [Google Scholar] [CrossRef] [Green Version]
- Bokhimi, X.; Morales, A.; Novaro, O.; Portilla, M.; Lopez, T.; Tzompantzi, F.; Gomez, R. Tetragonal nanophase stabilization in nondoped sol–gel zirconia prepared with different hydrolysis catalysts. J. Solid State Chem. 1998, 135, 28–35. [Google Scholar] [CrossRef]
- Sayılkan, F.; Asiltürk, M.; Burunkaya, E.; Arpaç, E. Hydrothermal synthesis and characterization of nanocrystalline ZrO2 and surface modification with 2-acetoacetoxyethyl methacrylate. J. Sol-Gel Sci. Technol. 2009, 51, 182–189. [Google Scholar]
- Rauwel, E.; Dubourdieu, C.; Holländer, B.; Rochat, N.; Ducroquet, F.; Rossell, M.; Van Tendeloo, G.; Pelissier, B. Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 2006, 89, 012902. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Sakamoto, Y.; Saji, K.; Sakata, J. NOx decomposition mechanism on the electrodes of a zirconia-based amperometric NOx sensor. Sens. Actuators B Chem. 2003, 93, 214–220. [Google Scholar] [CrossRef]
- Joo, J.; Yu, T.; Kim, Y.W.; Park, H.M.; Wu, F.; Zhang, J.Z.; Hyeon, T. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 2003, 125, 6553–6557. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.M.; de Oliveira, A.A.A.M.; de Oliveira, N.; Hotza, D. Processing and characterization of yttria-stabilized zirconia foams for high-temperature applications. J. Ceram. 2013, 2013, 785210. [Google Scholar] [CrossRef]
- Khollam, Y.; Deshpande, A.; Patil, A.; Potdar, H.; Deshpande, S.; Date, S. Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route. Mater. Chem. Phys. 2001, 71, 235–241. [Google Scholar] [CrossRef]
- Brossmann, U.; Albu, M.; Hofer, F.; Würschum, R. Single grain analysis on a nanoscale in ZrO2: Al2O3 nano-composites by means of high-resolution scanning transmission electron microscopy. Mater. Res. Exp. 2016, 3, 125009. [Google Scholar] [CrossRef]
- Tsukada, T.; Venigalla, S.; Morrone, A.A.; Adair, J.H. Low-Temperature Hydrothermal Synthesis of Yttrium-Doped Zirconia Powders. J. Am. Ceram. Soc. 1999, 82, 1169–1174. [Google Scholar] [CrossRef]
- Dell’Agli, G.; Mascolo, G. Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature. J. Eur. Ceram. Soc. 2000, 20, 139–145. [Google Scholar] [CrossRef]
- Sato, K.; Horiguchi, K.; Nishikawa, T.; Yagishita, S.; Kuruma, K.; Murakami, T.; Abe, H. Hydrothermal Synthesis of Yttria-Stabilized Zirconia Nanocrystals with Controlled Yttria Content. Inorg. Chem. 2015, 54, 7976–7984. [Google Scholar] [CrossRef]
- Komarneni, S. Nanophase materials by hydrothermal, microwave-hydrothermal and microwave-solvothermal methods. Curr. Sci. 2003, 85, 1730–1734. [Google Scholar]
- Rosa, M.; Gooden, N.; Butterworth, S.; Zielke, P.; Kiebach, R.; Xu, Y.; Gadea, C.; Esposito, V. Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing. J. Eur. Ceram. Soc. 2019, 39, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Cheng, W.-Y.; Lu, S.-Y.; Lin, Y.-F.; Hsu, Y.-J.; Chang, K.-S.; Kang, C.-H.; Tung, K.-L. Growth of zirconia and yttria-stabilized zirconia nanorod arrays assisted by phase transition. CrystEngComm 2010, 12, 3664–3669. [Google Scholar] [CrossRef]
- Yadav, K.; Gupta, A.; Sharma, M.; Dabas, N.; Ganguli, A.; Jha, M. Low temperature synthesis process of stabilization of cubic yttria stabilized zirconia spindles: An important high temperature ceramic material. Mater. Res. Express 2017, 4, 105044. [Google Scholar] [CrossRef]
- Esposito, S.; Turco, M.; Bagnasco, G.; Cammarano, C.; Pernice, P. New insight into the preparation of copper/zirconia catalysts by sol–gel method. Appl. Catal. A 2011, 403, 128–135. [Google Scholar] [CrossRef]
- Costacurta, S.; Falcaro, P.; Vezzu, S.; Colasuonno, M.; Scopece, P.; Zanchetta, E.; Guglielmi, M.; Patelli, A. Fabrication of functional nanostructured coatings by a combined sol–gel and plasma-enhanced chemical vapour deposition method. J. Sol-Gel Soc. Technol. 2011, 60, 340–346. [Google Scholar] [CrossRef]
- Riaz, S.; Bashir, M.; Hussain, S.S.; Naseem, S. Effect of Mn-doping concentration on the structural & magnetic properties of sol-gel deposited ZnO diluted magnetic semiconductor. Int. Conf. Adv. Comput. Sci. Electron. Inf. (ICACSEI 2013) 2013, 41, 316–326. [Google Scholar]
- Saeed, M.A.; Riaz, S.; Noor, R.; Naseem, S. Optical and Structural Properties of ZnO Thin Films for Solar Cell Applications. Adv. Sci. Lett. 2013, 19, 834–838. [Google Scholar]
- Bashir, M.; Ashraf, R.; Imtiaz, M.; Riaz, S.; Naseem, S. Synthesis and Characterization of ZrO2-ZnO Nanoparticles. In Proceedings of the 2013 World Congress on Advances in Nano, Biomechanics, Robotics, and Energy Research, Seul, Korea, 25–28 August 2013; pp. 316–326. [Google Scholar]
- Ashkarran, A.A.; Aghigh, S.M.; Afshar, S.A.A.; Kavianipour, M.; Ghoranneviss, M. Synthesis and Characterization of ZrO2 Nanoparticles by an Arc Discharge Method in Water. Synth. React. Inorg. Met. Nano Met. Chem. 2011, 41, 425–428. [Google Scholar]
- Naseem, S.; Riaz, S.; Bashir, M. Synthesis and Characterization of Fe3O4 stabilized ZrO2 Nanoparticles. In Proceedings of the 2014 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM14), Busan, Korea, 24–28 August 2014. [Google Scholar]
- Arantes, T.M.; Mambrini, G.P.; Stroppa, D.G.; Leite, E.; Longo, E.; Ramirez, A.; Camargo, E. Stable colloidal suspensions of nanostructured zirconium oxide synthesized by hydrothermal process. J. Nanopart Res. 2010, 12, 3105–3110. [Google Scholar] [CrossRef]
- Palanisamy, M.; Rajendran, V.; Prema, R.; Bhakta, S.; Bishvanwesha, P. Synthesis of Monoclinic and Cubic ZrO2 Nanoparticles from Zircon. J. Am. Ceram. Soc. 2011, 94, 1410–1420. [Google Scholar]
- Colbea, C.; Avram, D.; Cojocaru, B.; Negrea, R.; Ghica, C.; Kessler, V.G.; Seisenbaeva, G.A.; Parvulescu, V.; Tiseanu, C. Full Tetragonal Phase Stabilization in ZrO2 Nanoparticles Using Wet Impregnation: Interplay of Host Structure, Dopant Concentration and Sensitivity of Characterization Technique. Nanomaterials 2018, 8, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilipenko, N.P.; Danilenko, I.A.; Konstantinova, T.E.; Dobrikov, A.A.; Dekanenko, V.M.; Volkova, G.K. Influence of ZrO2-3 mol.% Y2O3 powders ultrasonic treatment on physico-mechanical properties of ceramics. Funct. Mater. 1998, 5, 221–225. [Google Scholar]
- Alekseenko, V.I.; Volkova, G.K.; Danilenko, I.A.; Dobrikov, A.A.; Konstantinova, T.E.; Datsko, O.I. Effect of Pulsed Magnetic Field on the Thermal Decomposition of Zirconium Hydroxide. Inorg. Mater. 2000, 36, 908–911. [Google Scholar] [CrossRef]
- Pilipenko, N.P.; Konstantinova, T.E.; Tokiy, V.V.; Danilenko, I.A.; Saakjants, V.P.; Primisler, V.B. Peculiarities of zirconium hydroxide microwave drying process. Funct. Mater. 2002, 9, 545–549. [Google Scholar]
- Dubey, M.K.; Bijwe, J.; Ramakumar, S.S.V. Effect of dispersant on nano-PTFE based lubricants on tribo-performance in fretting wear mode. RSC Adv. 2016, 6, 22604–22614. [Google Scholar] [CrossRef]
- Sui, T.; Song, B.; Zhang, F.; Yang, Q. Effects of functional groups on the tribological properties of hairy silica nanoparticles as an additive to polyalphaolefin. RSC Adv. 2016, 6, 393–402. [Google Scholar] [CrossRef]
- Peng, D.X.; Chen, C.H.; Kang, Y.; Chang, Y.P.; Chang, S.Y. Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind. Lubr. Tribol. 2010, 62, 111–120. [Google Scholar] [CrossRef]
- De Monredon, S.; Cellot, A.; Ribot, F.; Sanchez, C.; Armelao, L.; Gueneau, L.; Delattre, L. Synthesis and characterization of crystalline tin oxide nanoparticles. J. Mater. Chem. 2002, 12, 2396–2400. [Google Scholar] [CrossRef]
- Cheng, Z.L.; Qin, X.X. Study on friction performance of graphene-based semi-solid grease. Chin. Chem. Lett. 2014, 25, 1305–1307. [Google Scholar] [CrossRef]
- Tenne, R. Fullerene-like materials and nanotubes from inorganic compounds with a layered (2-D) structure. Colloids Surf. A. Physicochem. Eng. Asp. 2002, 208, 83–92. [Google Scholar] [CrossRef]
- Petrone, V. Novel Nanoscale Friction Modifiers—Piezoviscosity Effect in EHL Contacts. Advances in Lubrication Technology and Modelling XII Ciclo N.S. (2011–2013). Ph.D. Thesis, Università degli Studi di Salerno, Fisciano, Italy, 2014. [Google Scholar]
- Planetary Centrifugal Mixer “THINKY MIXER” AR-100. Available online: http://www.thinkyusa.com/products/item-all/rotation-revolution-mixer/ar-100.html (accessed on 21 December 2019).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rylski, A.; Siczek, K. The Effect of Addition of Nanoparticles, Especially ZrO2-Based, on Tribological Behavior of Lubricants. Lubricants 2020, 8, 23. https://doi.org/10.3390/lubricants8030023
Rylski A, Siczek K. The Effect of Addition of Nanoparticles, Especially ZrO2-Based, on Tribological Behavior of Lubricants. Lubricants. 2020; 8(3):23. https://doi.org/10.3390/lubricants8030023
Chicago/Turabian StyleRylski, Adam, and Krzysztof Siczek. 2020. "The Effect of Addition of Nanoparticles, Especially ZrO2-Based, on Tribological Behavior of Lubricants" Lubricants 8, no. 3: 23. https://doi.org/10.3390/lubricants8030023
APA StyleRylski, A., & Siczek, K. (2020). The Effect of Addition of Nanoparticles, Especially ZrO2-Based, on Tribological Behavior of Lubricants. Lubricants, 8(3), 23. https://doi.org/10.3390/lubricants8030023