A Time-Frequency Based Approach for Acoustic Emission Assessment of Sliding Wear
Abstract
:1. Introduction
2. Methodology Overview
- –
- –
- –
- –
- the resultant AE at every instant is governed by one or few predominant damage mechanisms, whose scale prevails over others.
3. AE Data Acquisition and Processing
4. Materials and Testing Conditions
- (i)
- the number of AE sources identified, which should be logically connected with the active processes established based on tribological data and metallographic observations;
- (ii)
- the number of signals in specific clusters related to the severity of damage processes identified, indicating the “sensitivity” of AE signal recognition;
- (iii)
- the time of the start and the end of the activity of individual AE sources in relation to the actual damage processes revealed by the behavior of the tribological parameters and metallographic observations.
5. Results and Discussion
6. Applications
6.1. Real-Time Monitoring and Control of Friction Conditions
6.2. Recovery of the Friction Unit Fracture Process Chronology
6.3. Comparative Lubricant Performance Testing
6.4. Accelerated Tribological Tests
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Filtering Procedures
Appendix B. AE Features
Time domain | ||
signal root-mean-square value | âq rms = [Σ âq(t)2 / l ]0.5 | (A9) |
signal energy | Eq = Σ âq(t)2 | (A10) |
signal variance | σqâ = [Σ(âq(t) - âq mean)2/(l-1)]0.5 | (A11) |
signal kurtosis | γqâ = {Σ[(âq(t) - âq mean)/ σqâ]4} – 3 | (A12) |
signal skewness | sqâ = Σ[(âq(t) - âq mean)/ σqâ]3 | (A13) |
Spectral domain | ||
median frequency | fq med at Gqm = 1/2·ΣGq(f) | (A14) |
signal power | Wq =Σ Gq(f) | (A15) |
spectrum root-mean- square value | Gq rms = [ΣGq(f)2 / fmax]0.5 | (A16) |
PSD entropy | Hq = –Σ[ f∙Gq(f)∙log2(f∙Gq(f))] | (A17) |
PSD variance | σqG = [Σ(Gq(f) - Gq mean)2/(f-1)]0.5 | (A18) |
PSD kurtosis | γqG = {Σ[(Gq(f) - Gq mean)/ σqG]4} – 3 | (A19) |
PSD skewness | sqG = Σ[Gq(f) - Gq mean)/ σqG]3 | (A20) |
Appendix C. R2 Clustering Algorithm—K1
Appendix D. Modified k-Means Clustering—K2
Appendix E. Classification by the RMS change rate—K3
Appendix F. Details of Loading Conditions for the Mains Series of Tribological Tests
Contact Materials 1 | Load, N | Lubricants 2 | PV Factor, N/mm2·m/s | Hertzian Contact Stress Max, P0, MPa3 |
---|---|---|---|---|
Four-ball Tester «ChMT-1» (Russia), Testing Standards [65,66] | ||||
100Cr6/100Cr6 | 10 | D, L1–L6 | 309 | 944 |
59 | D, L1–L6 | 562 | 1716 | |
196 | D, L1–L6 | 839 | 2563 | |
392 | D, L1–L6 | 1057 | 3229 | |
491 | D, L1–L6 | 1139 | 3478 | |
530 | D, L3 | 1168 | 3569 | |
618 | D, L1–L6 | 1230 | 3757 | |
657 | L2, L3, L4 | 1255 | 3835 | |
696 | L2, L3, L4, L5 | 1280 | 3910 | |
736 | L2, L3, L4, L5 | 1303 | 3982 | |
785 | D, L1–L6 | 1332 | 4068 | |
824 | L2, L5 | 1353 | 4135 | |
883 | D, L2, L5 | 1385 | 4231 | |
981 | D, L1–L6 | 1434 | 4383 | |
1059 | D, L1 | 1472 | 4496 | |
1099 | L1 | 1490 | 4551 | |
1148 | L1, L6 | 1512 | 4618 | |
1167 | L1, L6 | 1520 | 4644 | |
1177 | L1, L6 | 1524 | 4657 | |
1236 | L1–L6 | 1549 | 4734 | |
1305 | L1, L3, L6 | 1578 | 4820 | |
1383 | L1, L3 | 1609 | 4914 | |
1570 | L1–L6 | 1678 | 5126 | |
1746 | L1, L2, L3 | 1738 | 5311 | |
1844 | L1, L2 | 1770 | 5409 | |
1962 | L1, L2, L4, L5, L6 | 1807 | 5522 | |
2070 | L1, L4, L5 | 1840 | 5621 | |
2158 | L4, L5 | 1866 | 5700 | |
2197 | L1, L4, L5 | 1877 | 5734 | |
2325 | L4, L5 | 1913 | 5843 | |
2453 | L1, L5, L6 | 1947 | 5948 | |
3090 | L6 | 2103 | 6424 | |
3924 | L6 | 2277 | 6957 | |
4905 | L6 | 2453 | 7494 | |
6082 | L6 | 2635 | 8051 | |
6180 | L6 | 2649 | 8094 | |
7848 | L6 | 2869 | 8765 | |
Pin-on-disk, Tribometer Nanovea TRB-50N (USA), Testing Standard [67] | ||||
100Cr6/St35 | 25 | D, L3 | 199 | 1776 |
35 | D, L3 | 223 | 1987 | |
100Cr6/C45 | 25 | D, L3 | 203 | 1809 |
35 | D, L3 | 227 | 2024 | |
100Cr6/W6Mo5Cr4V2 | 25 | D, L3 | 206 | 1840 |
35 | D, L3 | 231 | 2058 | |
Cylinder-on-ring, Testing Machine UMITI (Russia), Testing Standard [68] | ||||
45Cr22Ni4Mo3/Gh190 | 20 | D, L1, L3 | 107 | 610 |
40 | D, L1, L3 | 134 | 769 | |
60 | D, L1, L3 | 154 | 880 | |
AlMg3/Gh190 | 20 | D, L1, L3 | 74 | 423 |
40 | D, L1, L3 | 93 | 533 | |
60 | D, L1, L3 | 107 | 610 |
Appendix G. Results of Testing Various Combinations of Filtering and Clustering Algorithms
References
- Pollock, A. Chapter. Acoustic emission inspection. In ASM Metals Handbook. Nondestructive Evaluation and Quality Control; ASM International: Materials Park, OH, USA, 2002; Volume 17, pp. 593–628. [Google Scholar]
- Acoustic Emission—Research and Applications; Sikorski, W. (Ed.) InTech: Rijeka, Croatia, 2013; p. 222. [Google Scholar]
- Baranov, V.; Kudryavtsev, E.; Sarychev, G.; Schavelin, V. Acoustic Emission at Friction; Tribology and Interface Engineering Series 53; Briscoe, B.J., Ed.; Elsevier: London, UK, 2007; p. 220. [Google Scholar]
- Baranov, V.; Kudryavtsev, E.; Sarychev, G.; Schavelin, V. Chapter 1. In Friction of Solids and Nature of Acoustic Emission; Tribology and Interface Engineering Series; Briscoe, B.J., Ed.; Elsevier: London, UK, 2007; pp. 1–36. [Google Scholar]
- Boness, R.J.; Mcbride, S.L. Adhesive and abrasive wear studies using acoustic emission techniques. Wear 1991, 149, 41–53. [Google Scholar] [CrossRef]
- Boness, R.J.; Mcbride, S.L.; Sobczyk, M. Wear studies using acoustic-emission techniques. Tribol. Int. 1990, 23, 291–295. [Google Scholar] [CrossRef]
- Bhushan, B.; Wu, Y.J.; Tambe, N.S. Sliding contact energy measurement using a calibrated acoustic emission transducer. IEEE Trans. Magn. 2003, 39, 881–887. [Google Scholar] [CrossRef]
- Hanchi, J.; Klamecki, B.E. Acoustic emission monitoring of the wear process. Wear 1991, 145, 1–27. [Google Scholar] [CrossRef]
- Klamecki, B.E.; Hanchi, J. Wear process description based on acoustic-emission. J. Tribol. Trans. ASME 1990, 112, 469–476. [Google Scholar] [CrossRef]
- Lingard, S.; Yu, C.W.; Yau, C.F. Sliding wear studies using acoustic-emission. Wear 1993, 162, 597–604. [Google Scholar] [CrossRef]
- Bulatov, V.P.; Polevaya, O.V.; Sedakova, E.B.; Fadin, Y.A. Time dependence of the friction coefficient. Tech. Phys. Lett. 1996, 22, 777–778. [Google Scholar]
- Tandon, N.; Choudhury, A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol. Int. 1999, 32, 469–480. [Google Scholar] [CrossRef]
- Eftekharnejad, B.; Carrasco, M.R.; Charnley, B.; Mba, D. The application of spectral kurtosis on Acoustic Emission and vibrations from a defective bearing. Mech. Syst. Signal Process. 2011, 25, 266–284. [Google Scholar] [CrossRef] [Green Version]
- Mechefske, C.K.; Sun, G.; Sheasby, J. Using acoustic emission to monitor sliding wear. Insight Non-Destr. Test. Cond. Monit. 2002, 44, 490–497. [Google Scholar]
- Hisakado, T.; Warashina, T. Relationship between friction and wear properties and acoustic emission characteristics: Iron pin on hardened bearing steel disk. Wear 1998, 216, 1–7. [Google Scholar] [CrossRef]
- Lingard, S.; Ng, K.K. An investigation of acoustic-emission in sliding friction and wear of metals. Wear 1989, 130, 367–379. [Google Scholar] [CrossRef]
- Morhain, A.; Mba, D. Bearing defect diagnosis and acoustic emission. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2003, 217, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, K.; Forrest, D.; Tse, M.K. On-line wear monitoring using acoustic-emission. Wear 1993, 162, 605–610. [Google Scholar] [CrossRef]
- Matsuoka, K.; Taniguchi, K.; Nakakita, M. In-situ wear monitoring of slider and disk using acoustic emission. J. Tribol. 2001, 123, 175–180. [Google Scholar] [CrossRef]
- Benabdallah, H.S.; Aguilar, D.A. Acoustic emission and its relationship with friction and wear for sliding contact. Tribol. Trans. 2008, 51, 738–747. [Google Scholar] [CrossRef]
- Benabdallah, H.S.; Boness, R.J. Tribological behaviour and acoustic emissions of alumina, silicon nitride and SAE52100 under dry sliding. J. Mater. Sci. 1999, 34, 4995–5004. [Google Scholar] [CrossRef]
- Sun, J.; Wood, R.J.K.; Wang, L.; Care, I.; Powrie, H.E.G. Wear monitoring of bearing steel using electrostatic and acoustic emission techniques. Wear 2005, 259, 1482–1489. [Google Scholar] [CrossRef]
- Yao, Y.X.; Li, X.L.; Yuan, Z.J. Tool wear detection with fuzzy classification and wavelet fuzzy neural network. Int. J. Mach. Tools Manuf. 1999, 39, 1525–1538. [Google Scholar] [CrossRef] [Green Version]
- Kuo, R.J.; Cohen, P.H. Intelligent tool wear estimation system through artificial neural networks and fuzzy modeling. Artif. Intell. Eng. 1998, 12, 229–242. [Google Scholar] [CrossRef]
- Dutta, R.K.; Paul, S.; Chattopadhyay, A.B. The efficacy of backpropagation neural network with delta bar delta learning in predicting the wear of carbide inserts in face milling. Int. J. Adv. Manuf. Technol. 2006, 31, 434–442. [Google Scholar] [CrossRef]
- Price, E.D.; Lees, A.W.; Friswell, M.I. Detection of severe sliding and pitting fatigue wear regimes through the use of broadband acoustic emission. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2005, 219, 85–98. [Google Scholar] [CrossRef]
- Hase, A.; Mishina, H.; Wada, M. Correlation between features of acoustic emission signals and mechanical wear mechanisms. Wear 2012, 292–293, 144–150. [Google Scholar] [CrossRef]
- Smolin, A.Y.; Dobrynin, S.A.; Psakhie, S.G. On the possibility of using acoustic spectra to study deformation processes in surface layers during friction. Tech. Phys. Lett. 2009, 35, 1124–1128. [Google Scholar] [CrossRef]
- Kishi, T.; Ohtsu, M.; Yuyama, S. Acoustic Emission-Beyond the Millennium; Elsevier Science Ltd.: Kidlington, UK, 2000; p. 234. [Google Scholar]
- Gokhale, M.Y.; Khanduja, D.K. Time-domain signal analysis using wavelet packet decomposition approach. Int. J. Commun. Netw. Syst. Sci. 2010, 3, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Ferrando Chacon, J.L.; Kappatos, V.; Balachandran, W.; Gan, T.-H. A novel approach for incipient defect detection in rolling bearings using acoustic emission technique. Appl. Acoust. 2015, 89, 88–100. [Google Scholar] [CrossRef]
- Saeidi, F.; Shevchik, S.A.; Wasmer, K. Automatic detection of scuffing using acoustic emission. Tribol. Int. 2016, 94, 112–117. [Google Scholar] [CrossRef]
- Baccar, D.; Söffker, D. Wear detection by means of wavelet-based acoustic emission analysis. Mech. Syst. Signal Process. 2015, 60–61, 198–207. [Google Scholar] [CrossRef]
- Wang, L.; Wood, R.J.K. Acoustic emissions from lubricated hybrid contacts. Tribol. Int. 2009, 42, 1629–1637. [Google Scholar] [CrossRef]
- Shevchik, S.A.; Saeidi, F.; Meylan, B.; Wasmer, K. Prediction of failure in lubricated surfaces using acoustic time-frequency features and random forest algorithm. IEEE Trans. Ind. Inf. 2017, 13, 1541–1553. [Google Scholar] [CrossRef]
- Bayer, R.G. Mechanical Wear Fundamentals and Testing, 2nd ed.; Marcel Dekker Ink: New York, NY, USA, 2004; p. 400. [Google Scholar]
- Botvina, L.R.; Levin, V.P.; Tyutin, M.R.; Zharkova, N.A.; Morozov, A.V.; Ozerskii, O.N.; Dobatkin, S.V. Wear Mechanisms of Structural Steels and Effect of Wear on Their Mechanical and Acoustic Properties during Tension. J. Frict. Wear 2013, 34, 6–13. [Google Scholar] [CrossRef]
- Kline, R.A.; Hartman, W.F. Frequency analysis of acoustic emission signals. In Proceedings of the 2nd International Conference on Mechanical Behavior of Materials, Boston, MA, USA, 16–20 August 1976; pp. 1631–1635. [Google Scholar]
- Williams, J.H.; Egan, D.M. Acoustic-emission spectral analysis of fiber composite failure mechanisms. Mater. Eval. 1979, 37, 43–47. [Google Scholar]
- Muravin, G.B.; Simkin, Y.V.; Merman, A.I. Identification of fracture mechanisms of materials using spectral analysis of acoustic emission signals. Russ. J. Nondestr. Test. 1989, 1, 8–15. [Google Scholar]
- Pomponi, E.; Vinogradov, A.; Danyuk, A. Wavelet-based approach to signal activity detection and phase picking: Application to acoustic emission. Signal Process. 2015, 115, 110–119. [Google Scholar] [CrossRef]
- Agletdinov, E.; Merson, D.; Vinogradov, A. A new method of low amplitude signal detection and its application in acoustic emission. Appl. Sci. 2020, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Vaseghi, S.V. Advanced Digital Signal Processing and Noise Reduction, 2nd ed.; John Wiley & Sons Ltd.: London, UK, 2000; p. 480. [Google Scholar]
- Allen, J.B. Short Time Spectral Analysis, Synthesis, and Modification by Discrete Fourier Transform. IEEE Trans. Acoust. Speech Signal Process. 1977, 25, 235–238. [Google Scholar] [CrossRef]
- Rastegaev, I.A.; Merson, D.L.; Rastegaeva, I.I.; Vinogradov, A.Y.; Chugunov, A.V. Comparative spectral analysis of noise-like acoustic signals during monitoring and diagnostics of industrial facilities. Test. Diagn. 2012, 10, 80–87. (In Russian) [Google Scholar]
- Rastegaeva, I.I.; Rastegaev, I.A.; Vikarchuk, A.A.; Merson, D.L.; Seleznev, M.N.; Vinogradov, A.Y. Acoustic emission-based feedback system for optimization of liquid processing in rotor devices. Instrum. Syst. Monit. Control Diagn. 2012, 5, 25–31. (In Russian) [Google Scholar]
- Rastegaev, I.A.; Danyuk, A.V.; Vinogradov, A.Y.; Merson, D.L.; Chugunov, A.V. Location of noise-like sources of acoustic emissions using the spectral similarity method. Russ. J. Nondestr. Test. 2013, 49, 553–561. [Google Scholar] [CrossRef]
- Rastegaev, I.A.; Danyuk, A.V.; Vinogradov, A.Y.; Merson, D.L.; Rastegaeva, I.I. Analysis of noise-like signals of acoustic emission methods broadband filtering. Test. Diagn. 2014, 8, 49–56. (In Russian) [Google Scholar]
- Van Trees, H.L. Detection, Estimation, and Modulation Theory: Detection, Estimation, and Linear Modulation Theory; Part 1; John Wiley & Sons Ltd.: London, UK, 2001; p. 440. [Google Scholar]
- Ostanin, S.A. Increase of the signal-noise ratio by the method of sequential calculation of autocorrelation function. J. Radio Electron. 2011, 12, 1–9. (In Russian) [Google Scholar]
- Mac Queen, J.B. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability; University of California: Berkeley, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Hartigan, J.A. Clustering algorithms; John Wiley & Sons Ltd.: New York, NY, USA, 1975; p. 369. [Google Scholar]
- Wong, C.-C.; Chen, C.-C.; Su, M.-C. A novel algorithm for data clustering. Pattern Recognit. 2001, 34, 425–442. [Google Scholar] [CrossRef]
- Vinogradov, A. Principles of statistical and spectral analysis of acoustic emission and their application to plastic deformation of metallic glasses. J. Acoust. Emiss. 1998, 16, 158–169. [Google Scholar]
- Rippengill, S.; Worden, K.; Holford, K.M.; Pullin, R. Automatic classification of acoustic emission patterns. Strain 2003, 39, 31–41. [Google Scholar] [CrossRef]
- Sause, M.G.R.; Gribov, A.; Unwin, A.R.; Horn, S. Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recognit. Lett. 2012, 33, 17–23. [Google Scholar] [CrossRef]
- Sadegh, H.; Mehdi, A.N.; Mehdi, A. Classification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network and genetic algorithm. Tribol. Int. 2016, 95, 426–434. [Google Scholar] [CrossRef]
- Merson, D.L.; Razuvaev, A.A.; Vinogradov, A.Y. Application of the Spectral Analysis of Acoustic Emission Signals to Studies of Vulnerability of TiN Coatings on Steel Substrates. Russ. J. Nondestr. Test. 2002, 38, 508–516. [Google Scholar] [CrossRef]
- Everitt, B.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; John Wiley & Sons: London, UK, 2011; p. 360. [Google Scholar]
- Vinogradov, A.; Merson, D.L.; Patlan, V.; Hashimoto, S. Effect of Solid Solution Hardening and Stacking Fault Energy on Plastic Flow and Acoustic Emission in Cu-Ge Alloys. Mater. Sci. Eng. A 2003, 341, 57–73. [Google Scholar] [CrossRef]
- Rastegaev, I.A.; Merson, D.L. New Approaches to the Assessment of Wear Mechanisms in Real-Time According to Acoustic Emission Data; Chapter 19; Rubanik, V.V., Ed.; VGTU-Press: Vitebsk, Belarus, 2018; pp. 402–427. (In Belarusian) [Google Scholar]
- Rastegaev, I.A.; Merson, D.L.; Vinogradov, A.Y.; Danyuk, A.V. Technique for the Determination of the Critical Points under Acoustic Emission Tribological Tests. Inorg. Mater. 2017, 53, 1506–1512. [Google Scholar] [CrossRef]
- Lim, S.; Ashby, M. Overview no. 55 Wear-Mechanism maps. Acta Metall. 1987, 35, 1–24. [Google Scholar] [CrossRef]
- Wang, Q.J.; Chung, Y.-W. Encyclopedia of Tribology; Springer: Boston, MA, USA, 2013; p. 4139. [Google Scholar]
- ASTM D2596, Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Grease (Four-Ball Method); ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM D2783, Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids (Four-Ball Method); ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM G99, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus; ASTM International: West Conshohocken, PA, USA, 2005.
- ASTM G77, Standard Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test; ASTM International: West Conshohocken, PA, USA, 2017.
- Baran, I.; Nowak, M.; Darski, W. Application of acoustic emission in monitoring of failure in slide bearings. J. Acoust. Emiss. 2007, 25, 341–347. [Google Scholar]
- Fadin, Y.A. Application of Acoustic Emissions for Mass Wear Analysis. J. Frict. Wear 2008, 29, 21–23. [Google Scholar] [CrossRef]
- Rastegaev, I.A.; Merson, D.L.; Danyuk, A.V.; Afanasyev, M.A.; Vinogradov, A. Using acoustic emission signal categorization for reconstruction of wear development timeline in tribosystems: Case studies and application examples. Wear 2018, 410–411, 83–92. [Google Scholar] [CrossRef]
- Rastegaev, I.A.; Merson, D.L. Express method for testing lubricants on a four-ball friction machine using the acoustic emission method. Bull. Samara Sci. Cent. Russ. Acad. Sci. 2008, 8, 101–105. (In Russian) [Google Scholar]
- Bailey, D.H.; Swarztrauber, P.N. A Fast Method for the Numerical Evaluation of Continuous Fourier and Laplace Transforms. SIAM J. Sci. Comput. 1994, 15, 1105–1110. [Google Scholar] [CrossRef] [Green Version]
- Welch, P.D. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D. The Mahalanobis distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18. [Google Scholar] [CrossRef]
- Manson, G.; Worden, K.; Holford, K.; Pullin, R. Visualisation and dimension reduction of acoustic emission data for damage detection. J. Intell. Mater. Syst. Struct. 2001, 12, 529–536. [Google Scholar] [CrossRef]
- Rastegaev, I.A.; Merson, D.L.; Vinogradov, A.Y. Real time acoustic emission methodology in effective tribology testing. Int. J. Microstruct. Mater. Prop. 2014, 9, 360–370. [Google Scholar] [CrossRef]
- Popov, V.L. Contact Mechanics and Friction. Physical Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2017; p. 391. [Google Scholar]
- Pomponi, E.; Vinogradov, A. A real-time approach to acoustic emission clustering. Mech. Syst. Signal Process. 2013, 40, 791–804. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastegaev, I.; Merson, D.; Rastegaeva, I.; Vinogradov, A. A Time-Frequency Based Approach for Acoustic Emission Assessment of Sliding Wear. Lubricants 2020, 8, 52. https://doi.org/10.3390/lubricants8050052
Rastegaev I, Merson D, Rastegaeva I, Vinogradov A. A Time-Frequency Based Approach for Acoustic Emission Assessment of Sliding Wear. Lubricants. 2020; 8(5):52. https://doi.org/10.3390/lubricants8050052
Chicago/Turabian StyleRastegaev, Igor, Dmitry Merson, Inna Rastegaeva, and Alexei Vinogradov. 2020. "A Time-Frequency Based Approach for Acoustic Emission Assessment of Sliding Wear" Lubricants 8, no. 5: 52. https://doi.org/10.3390/lubricants8050052
APA StyleRastegaev, I., Merson, D., Rastegaeva, I., & Vinogradov, A. (2020). A Time-Frequency Based Approach for Acoustic Emission Assessment of Sliding Wear. Lubricants, 8(5), 52. https://doi.org/10.3390/lubricants8050052