Tribochemistry as an Alternative Synthesis Pathway
Abstract
:1. Introduction
2. Mechanochemical Synthesis
2.1. Inorganic Compounds: Ceramics, Semiconductors, and Nanoparticles
2.2. Organic Compounds: Metal-Organic Frameworks and Co-Crystals
3. Tribochemical Synthesis
3.1. Driving Mechanisms of Tribochemical Reactions
3.1.1. Frictional Heating and Wear
3.1.2. The Role of Force
3.1.3. Triboemission at the Interface
3.2. Molecular Dynamics in Tribochemistry (in Brief)
3.3. Tribofilm Formation
3.4. Novel Tribochemical Synthesis
3.4.1. Direct-Write Synthesis of Carbonaceous Materials
3.4.2. Nano Structure Fabrication
3.4.3. Tribopolymerization
4. Advantage of Tribochemistry and Concluding Remarks
Funding
Conflicts of Interest
References
- Beyer, M.K.; Clausen-Schaumann, H. Mechanochemistry: The mechanical activation of covalent bonds. Chem. Rev. 2005, 105, 2921–2948. [Google Scholar] [CrossRef] [PubMed]
- Boldyrev, V.V. Mechanochemistry and mechanical activation of solids. Uspekhi Khimii 2006, 75, 203–216. [Google Scholar]
- Stauch, T.; Dreuw, A. Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis. Chem. Rev. 2016, 116, 14137–14180. [Google Scholar] [CrossRef] [PubMed]
- Balaz, P.; Achimovicova, M.; Balaz, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J.M.; Delogu, F.; Dutkova, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571–7637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, M.M.; Davis, D.A.; Shen, Q.; Odom, S.A.; Sottos, N.R.; White, S.R.; Moore, J.S. Mechanically-Induced Chemical Changes in Polymeric Materials. Chem. Rev. 2009, 109, 5755–5798. [Google Scholar] [CrossRef]
- Ribas-Arino, J.; Marx, D. Covalent Mechanochemistry: Theoretical Concepts and Computational Tools with Applications to Molecular Nanomechanics. Chem. Rev. 2012, 112, 5412–5487. [Google Scholar] [CrossRef]
- Martini, A.; Eder, S.J.; Dorr, N. Tribochemistry: A Review of Reactive Molecular Dynamics Simulations. Lubricants 2020, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.; Garcia, F. Main group mechanochemistry: From curiosity to established protocols. Chem. Soc. Rev. 2019, 48, 2274–2292. [Google Scholar] [CrossRef] [Green Version]
- Takacs, L. The mechanochemical reduction of AgCl with metals. J. Therm. Anal. Calorim. 2007, 90, 81–84. [Google Scholar] [CrossRef]
- Takacs, L.M. Carey Lea, the first mechanochemist. J. Mater. Sci. 2004, 39, 4987–4993. [Google Scholar] [CrossRef]
- Do, J.L.; Friscic, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friscic, T. New opportunities for materials synthesis using mechanochemistry. J. Mater. Chem. 2010, 20, 7599–7605. [Google Scholar] [CrossRef]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, W.; Eddleston, M.D. Introductory Lecture: Mechanochemistry, a versatile synthesis strategy for new materials. Faraday Discuss. 2014, 170, 9–34. [Google Scholar] [CrossRef] [Green Version]
- Varma, R.S. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials. ACS Sustain. Chem. Eng. 2016, 4, 5866–5878. [Google Scholar] [CrossRef]
- Wang, G.W. Mechanochemical organic synthesis. Chem. Soc. Rev. 2013, 42, 7668–7700. [Google Scholar] [CrossRef]
- Tsuzuki, T.; McCormick, P.G. Mechanochemical synthesis of nanoparticles. J. Mater. Sci. 2004, 39, 5143–5146. [Google Scholar] [CrossRef]
- Huot, J.; Ravnsbaek, D.B.; Zhang, J.; Cuevas, F.; Latroche, M.; Jensen, T.R. Mechanochemical synthesis of hydrogen storage materials. Prog. Mater. Sci. 2013, 58, 30–75. [Google Scholar] [CrossRef]
- Friscic, T.; Mottillo, C.; Titi, H.M. Mechanochemistry for Synthesis. Angew. Chem. Int. Ed. 2020, 59, 1018–1029. [Google Scholar] [CrossRef]
- Hsu, S.M.; Zhang, J.; Yin, Z.F. The nature and origin of tribochemistry. Tribol. Lett. 2002, 13, 131–139. [Google Scholar] [CrossRef]
- Neville, A.; Morina, A.; Haque, T.; Voong, Q. Compatibility between tribological surfaces and lubricant additives—How friction and wear reduction can be controlled by surface/lube synergies. Tribol. Int. 2007, 40, 1680–1695. [Google Scholar] [CrossRef]
- Fischer, T.E. Tribochemistry. Annu. Rev. Mater. Sci. 1988, 18, 303–323. [Google Scholar] [CrossRef]
- Juhasz, Z.; Opoczky, L.; Nogradi, M. Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles; Ellis Horwood: Hemel Hempstead, UK, 1990. [Google Scholar]
- Spikes, H. Stress-augmented thermal activation: Tribology feels the force. Friction 2018, 6, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Clarivate Analytics. Web of Science Core Collection; Clarivate Analytics: Philadelphia, PA, USA, 2017. [Google Scholar]
- Achar, T.K.; Bose, A.; Mal, P. Mechanochemical synthesis of small organic molecules. Beilstein J. Org. Chem. 2017, 13, 1907–1931. [Google Scholar] [CrossRef] [Green Version]
- Ahmadabadi, V.G.; Azghandi, S.H.M.; Khaki, J.V.; Haddad-Sabzevar, M. Synthesis of nano-structure molybdenum disilicide from primary mixture of MoO3 + Si + Al through mechanochemical reactions. Int. J. Refract. Met. Hard Mater. 2013, 41, 121–127. [Google Scholar] [CrossRef]
- Suchanek, W.L.; Shuk, P.; Byrappa, K.; Riman, R.E.; TenHuisen, K.S.; Janas, V.F. Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 2002, 23, 699–710. [Google Scholar] [CrossRef]
- Espinoza-Gonzalez, R.; Vega, E.; Tamayo, R.; Criado, J.M.; Dianez, M.J. Mechanochemical Processing of CaCu3Ti4O12 with Giant Dielectric Properties. Mater. Manuf. Process. 2014, 29, 1179–1183. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Ding, J.; Chen, M.S.; Shen, Z.X. The effects of mechanical activation in synthesizing ultrafine barium ferrite powders from co-precipitated precursors. J. Mater. Chem. 2000, 10, 1745–1749. [Google Scholar] [CrossRef]
- Wu, E.; Campbell, S.; Kaczmarek, W. A Mössbauer effect study of ball-milled strontium ferrite. J. Magn. Magn. Mater. 1998, 177, 255–256. [Google Scholar] [CrossRef]
- Ağaoğulları, D.; Balcı, Ö.; Öveçoğlu, M.; Duman, I. Preparation of LaB6 Powders via Calciothermic Reduction using Mechanochemistry and Acid Leaching. KONA Powder Part. J. 2016, 33, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Zhang, Q.; Li, X.; He, X.; Song, S. Mechanochemical approaches to synthesize layered double hydroxides: A review. Appl. Clay Sci. 2016, 119, 185–192. [Google Scholar] [CrossRef]
- Chen, Y.; Marsh, M.; Williams, J.; Ninham, B.W. Production of rutile from ilmenite by room temperature ball-milling-induced sulphurisation reaction. J. Alloy. Compd. 1996, 245, 54–58. [Google Scholar] [CrossRef]
- Radev, D.D.; Marinov, M. Comparative studies on the high-temperature and mechanochemical synthesis of titaniun diboride. Comptes Rendus De L Acad. Bulg. Des Sci. 2013, 66, 827–832. [Google Scholar] [CrossRef]
- Puclin, T.; Kaczmarek, W.; Ninham, B.W. Mechanochemical processing of ZrSiO4. Mater. Chem. Phys. 1995, 40, 73–81. [Google Scholar] [CrossRef]
- Bujňáková, Z.; Baláz, P.; Caplovicova, M.; Čaplovič, L.; Kováč, J.; Zorkovská, A. Mechanochemical synthesis of InAs nanocrystals. Mater. Lett. 2015, 159, 474–477. [Google Scholar] [CrossRef]
- Kristl, M.; Gyergyek, S.; Srt, N.; Ban, I. Mechanochemical Route for the Preparation of Nanosized Aluminum and Gallium Sulfide and Selenide. Mater. Manuf. Process. 2016, 31, 1608–1612. [Google Scholar] [CrossRef]
- Baláž, P.; Hegedüs, M.; Achimovičová, M.; Baláž, M.; Tešinský, M.; Dutková, E.; Kanuchova, M.; Briančin, J. Semi-industrial Green Mechanochemical Syntheses of Solar Cell Absorbers Based on Quaternary Sulfides. ACS Sustain. Chem. Eng. 2018, 6, 2132–2141. [Google Scholar] [CrossRef]
- Balaz, P.; Poughahramani, P.; Dutkova, E.; Turianicova, E.; Kovac, J.; Satka, A. Mechanochemistry in Preparation of Nanocrystalline Semiconductors. Curr. Top. Solid State Phys. 2008, 5, 3756–3758. [Google Scholar]
- Chin, P.; Ding, J.; Yi, J.; Liu, B. Synthesis of FeS2 and FeS nanoparticles by high-energy mechanical milling and mechanochemical processing. J. Alloy. Compd. 2005, 390, 255–260. [Google Scholar] [CrossRef]
- Huitink, D.; Peng, L.; Ribeiro, R.; Liang, H. In situobservation of stress-induced Au–Si phase transformation. Appl. Phys. Lett. 2009, 94, 183111. [Google Scholar] [CrossRef]
- Baláž, M.; Daneu, N.; Balážová, Ľ.; Dutková, E.; Tkáčiková, L.; Briančin, J.; Vargová, M.; Balážová, M.; Zorkovská, A.; Baláž, P. Bio-mechanochemical synthesis of silver nanoparticles with antibacterial activity. Adv. Powder Technol. 2017, 28, 3307–3312. [Google Scholar] [CrossRef]
- Bujňáková, Z.; Dutková, E.; Kello, M.; Mojzis, J.; Baláž, M.; Baláž, P.; Shpotyuk, O. Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications. Nanoscale Res. Lett. 2017, 12, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasprzak, A.; Bystrzejewski, M.; Koszytkowska-Stawinska, M.; Popławska, M. Grinding-induced functionalization of carbon-encapsulated iron nanoparticles. Green Chem. 2017, 19, 3510–3514. [Google Scholar] [CrossRef] [Green Version]
- Salari, M.; Khoie, S.M.; Marashi, P.; Rezaee, M. Synthesis of TiO2 nanoparticles via a novel mechanochemical method. J. Alloy. Compd. 2009, 469, 386–390. [Google Scholar] [CrossRef]
- Dunnill, C.W.; Aiken, Z.; Kafizas, A.; Pratten, J.; Wilson, M.; Morgan, D.J.; Parkin, I.P. White light induced photocatalytic activity of sulfur-doped TiO2 thin films and their potential for antibacterial application. J. Mater. Chem. 2009, 19, 8747–8754. [Google Scholar] [CrossRef] [Green Version]
- Kotta, A.; Ansari, S.A.; Parveen, N.; Fouad, H.; Alothman, O.Y.; Khaled, U.; Seo, H.K.; Ansari, Z.A.; Ansari, S.G. Mechanochemical synthesis of melamine doped TiO2 nanoparticles for dye sensitized solar cells application. J. Mater. Sci. Mater. Electron. 2018, 29, 9108–9116. [Google Scholar] [CrossRef]
- Dutková, E.; Čaplovičová, M.; Škorvánek, I.; Baláž, M.; Zorkovská, A.; Baláž, P.; Čaplovič, L. Structural, surface and magnetic properties of chalcogenide Co9S8 nanoparticles prepared by mechanochemical synthesis. J. Alloy. Compd. 2018, 745, 863–867. [Google Scholar] [CrossRef]
- Ameri, B.; Davarani, S.S.H.; Roshani, R.; Moazami, H.R.; Tadjarodi, A. A flexible mechanochemical route for the synthesis of copper oxide nanorods/nanoparticles/nanowires for supercapacitor applications: The effect of morphology on the charge storage ability. J. Alloy. Compd. 2017, 695, 114–123. [Google Scholar] [CrossRef]
- Vazquéz-Olmos, A.; Sánchez-Vergara, M.; Osorio, A.-L.F.; Hernández-García, A.; Sato-Berrú, R.Y.; Álvarez-Bada, J.R. Mechanochemical Synthesis of YFeO3 Nanoparticles: Optical and Electrical Properties of Thin Films. J. Clust. Sci. 2018, 29, 225–233. [Google Scholar] [CrossRef]
- Lin, Y.; Watson, K.A.; Ghose, S.; Smith, J.J.G.; Williams, T.V.; Crooks, R.E.; Cao, W.; Connell, J.W. Direct Mechanochemical Formation of Metal Nanoparticles on Carbon Nanotubes. J. Phys. Chem. C 2009, 113, 14858–14862. [Google Scholar] [CrossRef]
- Xu, J.; Jeon, I.Y.; Choi, H.J.; Kim, S.J.; Shin, S.H.; Park, N.; Dai, L.M.; Baek, J.B. Metalated graphene nanoplatelets and their uses as anode materials for lithium-ion batteries. 2D Mater. 2016, 4, 014002. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-H.; Lo, W.-S.; Kuo, Y.-W.; Chen, W.-J.; Linbc, C.-H.; Shieh, F.-K. Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chem. Commun. 2017, 53, 5818–5821. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef] [Green Version]
- Braga, D.; Maini, L.; Polito, M.; Mirolo, L.; Grepioni, F. Mechanochemical assembly of hydrogen bonded organic-organometallic solid compounds. Chem. Commun. 2002, 24, 2960–2961. [Google Scholar] [CrossRef] [PubMed]
- Braga, D.; Giaffreda, S.L.; Grepioni, F.; Pettersen, A.; Maini, L.; Curzi, M.; Polito, M. Mechanochemical preparation of molecular and supramolecular organometallic materials and coordination networks. Dalton Trans. 2006, 37, 1249–1263. [Google Scholar] [CrossRef]
- Kaupp, G. Solid-state molecular syntheses: Complete reactions without auxiliaries based on the new solid-state mechanism. Crystengcomm 2003, 5, 117–133. [Google Scholar] [CrossRef]
- Quaresma, S.; Andre, V.; Fernandes, A.; Duarte, M.T. Mechanochemistry—A green synthetic methodology leading to metallodrugs, metallopharmaceuticals and bio-inspired metal-organic frameworks. Inorg. Chim. Acta 2017, 455, 309–318. [Google Scholar] [CrossRef]
- Bond, A.D. What is a co-crystal? Crystengcomm 2007, 9, 833–834. [Google Scholar] [CrossRef]
- Oburn, S.M.; Ray, O.A.; MacGillivray, L.R. Elusive Nonsolvated Cocrystals of Aspirin: Two Polymorphs with Bipyridine Discovered with the Assistance of Mechanochemistry. Cryst. Growth Des. 2018, 18, 2495–2501. [Google Scholar] [CrossRef]
- Hu, Y.; Gniado, K.; Erxleben, A.; McArdle, P. Mechanochemical Reaction of Sulfathiazole with Carboxylic Acids: Formation of a Cocrystal, a Salt, and Coamorphous Solids. Cryst. Growth Des. 2014, 14, 803–813. [Google Scholar] [CrossRef]
- Braga, D.; Grepioni, F.; Lampronti, G.I.; Maini, L.; Turrina, A. Ionic Co-crystals of Organic Molecules with Metal Halides: A New Prospect in the Solid Formulation of Active Pharmaceutical Ingredients. Cryst. Growth Des. 2011, 11, 5621–5627. [Google Scholar] [CrossRef]
- Shan, N.; Toda, F.; Jones, W. Mechanochemistry and co-crystal formation: Effect of solvent on reaction kinetics. Chem. Commun. 2002, 20, 2372–2373. [Google Scholar] [CrossRef]
- Batzdorf, L.; Zientek, N.; Rump, D.; Fischer, F.; Maiwald, M.; Emmerling, F. Make and break—Facile synthesis of cocrystals and comprehensive dissolution studies. J. Mol. Struct. 2017, 1133, 18–23. [Google Scholar] [CrossRef]
- Fischer, F.; Wenzel, K.J.; Rademann, K.; Emmerling, F. Quantitative determination of activation energies in mechanochemical reactions. Phys. Chem. Chem. Phys. 2016, 18, 23320–23325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, V.P.; Oliveira, C.K.; de Souza, T.M.; Menezes, P.H.; Alves, S.; Longo, R.L.; Malvestiti, I. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst. Molecules 2016, 21, 1539. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, J.G.; Ardila-Fierro, K.J.; Crawford, D.; James, S.L.; Bolm, C. Mechanoenzymatic peptide and amide bond formation. Green Chem. 2017, 19, 2620–2625. [Google Scholar] [CrossRef]
- Nicholls, M.A.; Do, T.; Norton, P.R.; Kasrai, M.; Bancroft, G.M. Review of the lubrication of metallic surfaces by zinc dialkyl-dithlophosphates. Tribol. Int. 2005, 38, 15–39. [Google Scholar] [CrossRef]
- Spikes, H. The history and mechanisms of ZDDP. Tribol. Lett. 2004, 17, 469–489. [Google Scholar] [CrossRef]
- Campbell, K.L.; Sidebottom, M.A.; Atkinson, C.C.; Babuska, T.F.; Kolanovic, C.A.; Boulden, B.J.; Junk, C.P.; Krick, B.A. Ultralow Wear PTFE-Based Polymer Composites-The Role of Water and Tribochemistry. Macromolecules 2019, 52, 5268–5277. [Google Scholar] [CrossRef]
- Montei, E.L.; Ballarotto, V.W.; Little, M.E.; Kordesch, M.E. Applications for small photoelectron emission microscopes. J. Electron Spectrosc. Relat. Phenom. 1997, 84, 129–136. [Google Scholar] [CrossRef]
- Harris, M.D.; Berkebile, S.P.; Murthy, N.K.; Voevodin, A.A. In-situ instrumentation to observe transient tribological effects in high sliding speed unlubricated contacts. Wear 2020, 442, 203111. [Google Scholar] [CrossRef]
- Uzarevic, K.; Halasz, I.; Friscic, T. Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists. J. Phys. Chem. Lett. 2015, 6, 4129–4140. [Google Scholar] [CrossRef]
- Gracin, D.; Strukil, V.; Friscic, T.; Halasz, I.; Uzarevic, K. Laboratory Real-Time and In Situ Monitoring of Mechanochemical Milling Reactions by Raman Spectroscopy. Angew. Chem. Int. Ed. 2014, 53, 6193–6197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, J.A.; Gao, G.; Schall, J.D.; Knippenberg, M.T.; Mikulski, P.T. Friction between solids. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 1469–1495. [Google Scholar] [CrossRef] [PubMed]
- Archard, J.F. The temperature of rubbing surfaces. Wear 1959, 2, 438–455. [Google Scholar] [CrossRef]
- Kajdas, C. General Approach to Mechanochemistry and Its Relation to Tribochemistry. In Tribology in Enginering; Pihtili, H., Ed.; IntechOpen: London, UK, 2013; pp. 209–240. [Google Scholar]
- Bartenev, G.M.; Lavrentjev, V.V.; Konstantinova, N.A. Actual contact area and friction properties of elastomers under frictional contact with solid surfaces. Wear 1971, 18, 439–448. [Google Scholar] [CrossRef]
- Watkins, R.C. The antiwear mechanism of zddps. 2. Tribol. Int. 1982, 15, 13–15. [Google Scholar] [CrossRef]
- Mori, S.; Shitara, Y. Tribochemical activation of gold surface by scratching. Appl. Surf. Sci. 1994, 78, 269–273. [Google Scholar] [CrossRef]
- Philippon, D.; De Barros-Bouchet, M.I.; Le Mogne, T.; Lerasle, O.; Bouffet, A.; Martin, J.M. Role of nascent metallic surfaces on the tribochemistry of phosphite lubricant additives. Tribol. Int. 2011, 44, 684–691. [Google Scholar] [CrossRef]
- Kauzmann, W.; Eyring, H. The Viscous Flow of Large Molecules. J. Am. Chem. Soc. 1940, 62, 3113–3125. [Google Scholar] [CrossRef]
- Bell, G.I. Theoretical-models for the specific adhesion of cells to cells or to surfaces. Adv. Appl. Probab. 1980, 12, 566–567. [Google Scholar] [CrossRef] [Green Version]
- Evans, E. Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss. 1998, 111, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Konda, S.S.M.; Brantley, J.N.; Bielawski, C.W.; Makarov, D.E. Chemical reactions modulated by mechanical stress: Extended Bell theory. J. Chem. Phys. 2011, 135, 164103. [Google Scholar] [CrossRef]
- Krupicka, M.; Marx, D. Disfavoring Mechanochemical Reactions by Stress-Induced Steric Hindrance. J. Chem. Theory Comput. 2015, 11, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.C.; Boulatov, R. Comparison of the predictive performance of the Bell-Evans, Taylor-expansion and statistical-mechanics models of mechanochemistry. Chem. Commun. 2013, 49, 4187–4189. [Google Scholar] [CrossRef]
- Hermes, M.; Boulatov, R. The Entropic and Enthalpic Contributions to Force-Dependent Dissociation Kinetics of the Pyrophosphate Bond. J. Am. Chem. Soc. 2011, 133, 20044–20047. [Google Scholar] [CrossRef]
- Akbulatov, S.; Boulatov, R. Experimental Polymer Mechanochemistry and its Interpretational Frameworks. Chemphyschem 2017, 18, 1422–1450. [Google Scholar] [CrossRef] [Green Version]
- Hyeon, C.; Thirumalai, D. Measuring the energy landscape roughness and the transition state location of biomolecules using single molecule mechanical unfolding experiments. J. Phys. Condens. Matter 2007, 19, 113101. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, C.; Chemla, Y.R.; Forde, N.R.; Izhaky, D. Mechanical processes in biochemistry. Annu. Rev. Biochem. 2004, 73, 705–748. [Google Scholar] [CrossRef] [Green Version]
- Ribas-Arino, J.; Shiga, M.; Marx, D. Understanding Covalent Mechanochemistry. Angew. Chem. Int. Ed. 2009, 48, 4190–4193. [Google Scholar] [CrossRef]
- Kajdas, C.; Hiratsuka, K. Tribochemistry, tribocatalysis, and the negative-ion-radical action mechanism. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 223, 827–848. [Google Scholar] [CrossRef]
- Kajdas, C.K. Importance of the triboemission process for tribochemical reaction. Tribol. Int. 2005, 38, 337–353. [Google Scholar] [CrossRef]
- Nevshupa, R. Triboemission: An attempt of developing a generalized classification. In Tribology Science and Application; Herman, M., Ed.; Vienna Publishing House, CUN PAN: Warsaw, Poland, 2004; pp. 11–25. [Google Scholar]
- Ohuchi, H.; Enomoto, Y. Frictional heat-stimulated exo-electron emission from alumina sliding surfaces. Appl. Phys. Lett. 1995, 66, 1205–1207. [Google Scholar] [CrossRef]
- Nakayama, K.; Fujiwara, T.; Hashimoto, H. Exoelectron measurement apparatus incorporated in a scanning electron-microscope. J. Phys. E Sci. Instrum. 1984, 17, 1199–1203. [Google Scholar] [CrossRef]
- Nakayama, K.; Hashimoto, H. Triboemission of charged-particles and photons from wearing ceramic surfaces in various gases. Tribol. Trans. 1992, 35, 643–650. [Google Scholar] [CrossRef]
- Huitink, D. Mechanochemical Fabrication and Characterization of Novel Low-Dimensional Materials. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2011. [Google Scholar]
- Wang, Y.; Yamada, N.; Xu, J.X.; Zhang, J.; Chen, Q.; Ootani, Y.; Higuchi, Y.; Ozawa, N.; Bouchet, M.I.D.; Martin, J.M.; et al. Triboemission of hydrocarbon molecules from diamond-like carbon friction interface induces atomic-scale wear. Sci. Adv. 2019, 5, eaax9301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, J.T.; Jensen, L.C.; Jahanlatibari, A. Fracto-emission—the role of charge separation. J. Vac. Sci. Technol. A Vac. Surf. Film. 1984, 2, 1112–1116. [Google Scholar] [CrossRef]
- Ciniero, A.; Le Rouzic, J.; Baikie, I.; Reddyhoff, T. The origins of triboemission—Correlating wear damage with electron emission. Wear 2017, 374, 113–119. [Google Scholar] [CrossRef]
- Erdemir, A.; Ramirez, G.; Eryilmaz, O.L.; Narayanan, B.; Liao, Y.F.; Kamath, G.; Sankaranarayanan, S. Carbon-based tribofilms from lubricating oils. Nature 2016, 536, 67–71. [Google Scholar] [CrossRef]
- Adams, H.L.; Garvey, M.T.; Ramasamy, U.S.; Ye, Z.J.; Martini, A.; Tysoe, W.T. Shear-Induced Mechanochemistry: Pushing Molecules Around. J. Phys. Chem. C 2015, 119, 7115–7123. [Google Scholar] [CrossRef]
- Dorr, N.; Brenner, J.; Ristic, A.; Ronai, B.; Besser, C.; Pejakovic, V.; Frauscher, M. Correlation between Engine Oil Degradation, Tribochemistry, and Tribological Behavior with Focus on ZDDP Deterioration. Tribol. Lett. 2019, 67, 62. [Google Scholar] [CrossRef]
- Bancroft, G.M.; Kasrai, M.; Fuller, M.; Yin, Z.; Fyfe, K.; Tan, K.H. Mechanisms of tribochemical film formation: Stability of tribo- and thermally-generated ZDDP films. Tribol. Lett. 1997, 3, 47–51. [Google Scholar] [CrossRef]
- Gosvami, N.N.; Lahouij, I.; Ma, J.; Carpick, R.W. Nanoscale in situ study of ZDDP tribofilm growth at aluminum-based interfaces using atomic force microscopy. Tribol. Int. 2020, 143, 106075. [Google Scholar] [CrossRef]
- Ghanbarzadeh, A.; Parsaeian, P.; Morina, A.; Wilson, M.C.T.; van Eijk, M.C.P.; Nedelcu, I.; Dowson, D.; Neville, A. A Semi-deterministic Wear Model Considering the Effect of Zinc Dialkyl Dithiophosphate Tribofilm. Tribol. Lett. 2016, 61, 12. [Google Scholar] [CrossRef] [Green Version]
- Onodera, T.; Morita, Y.; Suzuki, A.; Sahnoun, R.; Koyama, M.; Tsuboi, H.; Hatakeyama, N.; Endou, A.; Takaba, H.; Kubo, M.; et al. A theoretical investigation on the abrasive wear prevention mechanism of ZDDP and ZP tribofilms. Appl. Surf. Sci. 2008, 254, 7976–7979. [Google Scholar] [CrossRef]
- Wan, S.H.; Tieu, A.K.; Zhu, Q.; Zhu, H.T.; Cui, S.G.; Mitchell, D.R.G.; Kong, C.; Cowie, B.; Denman, J.A.; Liu, R. Chemical nature of alkaline polyphosphate boundary film at heated rubbing surfaces. Sci. Rep. 2016, 6, 26008. [Google Scholar] [CrossRef]
- Tieu, A.K.; Kong, N.; Wan, S.H.; Zhu, H.T.; Zhu, Q.; Mitchell, D.R.G.; Kong, C. The Influence of Alkali Metal Polyphosphate on the Tribological Properties of Heavily Loaded Steel on Steel Contacts at Elevated Temperatures. Adv. Mater. Interfaces 2015, 2, 1500032. [Google Scholar] [CrossRef]
- Erdemir, A.; Donnet, C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D Appl. Phys. 2006, 39, R311–R327. [Google Scholar] [CrossRef]
- Wu, H.X.; Khan, A.M.; Johnson, B.; Sasikumar, K.; Chung, Y.W.; Wang, Q.J. Formation and Nature of Carbon-Containing Tribofilms. ACS Appl. Mater. Interfaces 2019, 11, 16139–16146. [Google Scholar] [CrossRef]
- Johnson, B.; Wu, H.X.; Desanker, M.; Pickens, D.; Chung, Y.W.; Wang, Q.J. Direct Formation of Lubricious and Wear-Protective Carbon Films from Phosphorus- and Sulfur-Free Oil-Soluble Additives. Tribol. Lett. 2018, 66, 2. [Google Scholar] [CrossRef]
- Xu, J.; Nian, J.Y.; Wang, P.; Guo, Z.G.; Liu, W.M. Elastic Lubricious Effect of Solidlike Boundary Films in Oil-Starvation Lubrication. J. Phys. Chem. C 2019, 123, 1677–1691. [Google Scholar] [CrossRef]
- Shen, A.; Caldwell, D.; Ma, A.W.K.; Dardona, S. Direct write fabrication of high-density parallel silver interconnects. Addit. Manuf. 2018, 22, 343–350. [Google Scholar] [CrossRef]
- Schindler, S.; Vollnhals, F.; Halbig, C.E.; Marbach, H.; Steinruck, H.P.; Papp, C.; Eigler, S. Focused electron beam based direct-write fabrication of graphene and amorphous carbon from oxo-functionalized graphene on silicon dioxide. Phys. Chem. Chem. Phys. 2017, 19, 2683–2686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shawrav, M.M.; Taus, P.; Wanzenboeck, H.D.; Schinnerl, M.; Stoger-Pollach, M.; Schwarz, S.; Steiger-Thirsfeld, A.; Bertagnolli, E. Highly conductive and pure gold nanostructures grown by electron beam induced deposition. Sci. Rep. 2016, 6, 34003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlton, H.; Kundu, S.; Huitink, D. Tribochemical formation of high aspect ratio graphitic structures via platinum nanoparticle catalysts. Diam. Relat. Mater. 2019, 94, 101–109. [Google Scholar] [CrossRef]
- Yun, Y.J.; Ju, J.; Lee, J.H.; Moon, S.H.; Park, S.J.; Kim, Y.H.; Hong, W.G.; Ha, D.H.; Jang, H.; Lee, G.H.; et al. Highly Elastic Graphene-Based Electronics Toward Electronic Skin. Adv. Funct. Mater. 2017, 27, 1701513. [Google Scholar] [CrossRef]
- Khan, U.; Kim, T.H.; Ryu, H.; Seung, W.; Kim, S.W. Graphene Tribotronics for Electronic Skin and Touch Screen Applications. Adv. Mater. 2017, 29, 1603544. [Google Scholar] [CrossRef]
- Zhai, W.Z.; Srikanth, N.; Kong, L.B.; Zhou, K. Carbon nanomaterials in tribology. Carbon 2017, 119, 150–171. [Google Scholar] [CrossRef]
- Berman, D.; Mutyala, K.C.; Srinivasan, S.; Sankaranarayanan, S.; Erdemir, A.; Shevchenko, E.V.; Sumant, A.V. Iron-Nanoparticle Driven Tribochemistry Leading to Superlubric Sliding Interfaces. Adv. Mater. Interfaces 2019, 6, 1901416. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.; Liu, W.; Xue, Q. Tribochemistry and antiwear mechanism of organic-inorganic nanoparticles as lubricant additives. Tribol. Lett. 2006, 22, 79–84. [Google Scholar] [CrossRef]
- Berman, D.; Narayanan, B.; Cherukara, M.J.; Sankaranarayanan, S.; Erdemir, A.; Zinovev, A.; Sumant, A.V. Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity. Nat. Commun. 2018, 9, 1164. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Kundu, S.; Lee, H.; Liang, H. Formation of Silver Nanochains through Mechanoactivation. J. Phys. Chem. C 2009, 113, 8112–8117. [Google Scholar] [CrossRef]
- Tripathy, B.S.; Furey, M.J.; Kajdas, C. Mechanism of wear reduction of alumina by tribopolymerization. Wear 1995, 181, 138–147. [Google Scholar] [CrossRef]
- Yang, J.; Qi, Y.; Kim, H.D.; Rappe, A.M. Mechanism of Benzene Tribopolymerization on the RuO2(110) Surface. Phys. Rev. Appl. 2018, 9, 044038. [Google Scholar] [CrossRef] [Green Version]
- Yeon, J.; He, X.; Martini, A.; Kim, S.H. Mechanochemistry at Solid Surfaces: Polymerization of Adsorbed Molecules by Mechanical Shear at Tribological Interfaces. ACS Appl. Mater. Interfaces 2017, 9, 3142–3148. [Google Scholar] [CrossRef]
- He, X.; Kim, S.H. Surface Chemistry Dependence of Mechanochemical Reaction of Adsorbed Molecules-An Experimental Study on Tribopolymerization of alpha-Pinene on Metal, Metal Oxide, and Carbon Surfaces. Langmuir 2018, 34, 2432–2440. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Pollock, A.; Kim, S.H. Effect of Gas Environment on Mechanochemical Reaction: A Model Study with Tribo-Polymerization of -Pinene in Inert, Oxidative, and Reductive Gases. Tribol. Lett. 2019, 67, 25. [Google Scholar] [CrossRef]
- He, X.; Kim, S.H. Mechanochemistry of Physisorbed Molecules at Tribological Interfaces: Molecular Structure Dependence of Tribochemical Polymerization. Langmuir 2017, 33, 2717–2724. [Google Scholar] [CrossRef]
- Ponomarenko, A.G.; Kolesnikov, I.V.; Bicherov, A.A.; Shiryaeva, T.A.; Nikogosov, M.V.; Boiko, M.V. Influence of Formation of Nanocomposite Films on Friction Surfaces on the Antifriction Properties of Transmission Oil. J. Frict. Wear 2020, 41, 247–251. [Google Scholar] [CrossRef]
- Ponomarenko, A.G.; Boiko, M.V.; Kalmykova, A.G.; Boiko, T.G.; Shiryaeva, T.A.; Burlov, A.S. Tribochemical processes in engine oil with copper nanoparticles and azomethine ligand. J. Frict. Wear 2016, 37, 435–440. [Google Scholar] [CrossRef]
- Svahn, F.; Csillag, S. Formation of Low-Friction Particle/Polymer Composite Tribofilms by Tribopolymerization. Tribol. Lett. 2011, 41, 387–393. [Google Scholar] [CrossRef]
- Gotor, F.J.; Achimovicova, M.; Real, C.; Balaz, P. Influence of the milling parameters on the mechanical work intensity in planetary mills. Powder Technol. 2013, 233, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Tsuzuki, T.; McCormick, P.G.; Street, R. Ultrafine Co and Ni particles prepared by mechanochemical processing. J. Phys. D Appl. Phys. 1996, 29, 2365–2369. [Google Scholar] [CrossRef]
- Tcherdyntsev, V.V.; Senatov, F.S.; Kaloshkin, S.D.; Kuznetsov, D.V. Mechanochemical Synthesis of Ultradispersed Powders of Manganese and Zinc Oxides. Inorg. Mater. Appl. Res. 2009, 2, 5–9. [Google Scholar] [CrossRef]
- Crawford, D.E.; Casaban, J. Recent Developments in Mechanochemical Materials Synthesis by Extrusion. Adv. Mater. 2016, 28, 5747–5754. [Google Scholar] [CrossRef]
- Crawford, D.E.; Miskimmin, C.K.G.; Albadarin, A.B.; Walker, G.; James, S.L. Organic synthesis by Twin Screw Extrusion (TSE): Continuous, scalable and solvent-free. Green Chem. 2017, 19, 1507–1518. [Google Scholar] [CrossRef] [Green Version]
- Gryczke, A.; Schminke, S.; Maniruzzaman, M.; Beck, J.; Douroumis, D. Development and evaluation of orally disintegrating tablets (ODTs) containing Ibuprofen granules prepared by hot melt extrusion. Colloids Surf. B Biointerfaces 2011, 86, 275–284. [Google Scholar] [CrossRef]
- Wang, K.; Rangel, N.L.; Kundu, S.; Sotelo, J.C.; Tovar, R.M.; Seminario, J.M.; Liang, H. Switchable Molecular Conductivity. J. Am. Chem. Soc. 2009, 131, 10447–10451. [Google Scholar] [CrossRef]
- Chen, Y.; Jha, S.; Raut, A.; Parkinson, D.Y.; Zhang, B.; Elwany, A.; Liang, H. Sub-surface deformation in rolling contact of 3D printed lattice structured AlSi alloy. 3D Print. Addit. Manuf. 2020, in press. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlton, H.; Huitink, D.; Liang, H. Tribochemistry as an Alternative Synthesis Pathway. Lubricants 2020, 8, 87. https://doi.org/10.3390/lubricants8090087
Carlton H, Huitink D, Liang H. Tribochemistry as an Alternative Synthesis Pathway. Lubricants. 2020; 8(9):87. https://doi.org/10.3390/lubricants8090087
Chicago/Turabian StyleCarlton, Hayden, David Huitink, and Hong Liang. 2020. "Tribochemistry as an Alternative Synthesis Pathway" Lubricants 8, no. 9: 87. https://doi.org/10.3390/lubricants8090087
APA StyleCarlton, H., Huitink, D., & Liang, H. (2020). Tribochemistry as an Alternative Synthesis Pathway. Lubricants, 8(9), 87. https://doi.org/10.3390/lubricants8090087