Experimental Investigation on the Effect of Different Micro-Geometries on Cutting Edge and Wiper Edge on Surface Roughness and Forces in Face Milling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Work Material
2.2. Tool Sample Preparation
2.3. Machining Condition
3. Results and Discussion
3.1. Surface Roughness
3.2. Forces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Agmell, M.; Ahadi, A.; Gutnichenko, O.; Ståhl, J.-E. The influence of tool micro-geometry on stress distribution in turning operations of AISI 4140 by FE analysis. Int. J. Adv. Manuf. Technol. 2017, 89, 3109–3122. [Google Scholar] [CrossRef] [Green Version]
- Chandra, P.; Rao, C.P.; Kiran, R.; Kumar, V.R. Influence Of Machining Parameter On Cutting Force And Surface Roughness While Turning Alloy Steel. Mater. Today Proc. 2018, 5 Pt 2, 11794–11801. [Google Scholar] [CrossRef]
- Shree, M.S.; Velan, M.V.G.; Padmakumar, M. Experimental Investigation on Effect of High Pressure Coolant with Various Cutting Speed and Feed on Surface Roughness in Cylindrical Turning of AISI 1060 Steel Using Carbide Insert. Adv. Mater. Res. 2014, 984–985, 3–8. [Google Scholar] [CrossRef]
- Rech, J.; Yen, Y.-C.; Schaff, M.; Hamdi, H.; Altan, T.; Bouzakis, K. Influence of cutting edge radius on the wear resistance of PM-HSS milling inserts. Wear 2005, 259, 1168–1176. [Google Scholar] [CrossRef]
- Tzotzis, A.; García-Hernández, C.; Huertas-Talón, J.-L.; Kyratsis, P. Influence of the Nose Radius on the Machining Forces Induced during AISI-4140 Hard Turning: A CAD-Based and 3D FEM Approach. Micromachines 2020, 11, 798. [Google Scholar] [CrossRef] [PubMed]
- Endres, W.J.; Kountanya, R.K. The Effects of Corner Radius and Edge Radius on Tool Flank Wear. J. Manuf. Process. 2002, 4, 89–96. [Google Scholar] [CrossRef]
- Wang, R.; Wang, B.; Barber, G.C.; Gu, J.; Schall, J. Models for Prediction of Surface Roughness in a Face Milling Process Using Triangular Inserts. Lubricants 2019, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Sales, W.F.; Schoop, J.; da Silva, L.R.; Machado, Á.R.; Jawahir, I. A review of surface integrity in machining of hardened steels. J. Manuf. Process. 2020, 58, 136–162. [Google Scholar] [CrossRef]
- Zhao, T.; Zhou, J.M.; Bushlya, V.; Ståhl, J.E. Effect of cutting edge radius on surface roughness and tool wear in hard turning of AISI 52100 steel. Int. J. Adv. Manuf. Technol. 2017, 91, 3611–3618. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Agmell, M.; Persson, J.; Bushlya, V.; Ståhl, J.E.; Zhou, J.M. Correlation between edge radius of the cBN cutting tool and surface quality in hard turning. J. Superhard Mater. 2017, 39, 251–258. [Google Scholar] [CrossRef]
- Fulemova, J.; Janda, Z. Influence of the Cutting Edge Radius and the Cutting Edge Preparation on Tool Life and Cutting Forces at Inserts with Wiper Geometry. Procedia Eng. 2014, 69, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Chen, S.; Caudill, J.; Jawahir, I. Effect of cutting edge radius and cooling strategies on surface integrity in orthogonal machining of Ti-6Al-4V alloy. Procedia CIRP 2019, 82, 148–153. [Google Scholar] [CrossRef]
- Mayer, P.; Kirsch, B.; Müller, R.; Becker, S.; Harbou, E.V.; Aurich, J.C. Influence of Cutting Edge Geometry on Deformation Induced Hardening when Cryogenic Turning of Metastable Austenitic Stainless Steel AISI 347. Procedia CIRP 2016, 45, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.B.; Beno, T.; Klement, U.; Kaminski, J.; Ryttberg, K. Cutting temperatures during hard turning—Measurements and effects on white layer formation in AISI 52100. J. Mater. Process. Technol. 2014, 214, 1293–1300. [Google Scholar] [CrossRef]
- Hronek, O.; Zetek, M.; Baksa, T.; Adámek, P. Surface Quality Analysis of Cutting Tool Microgeometry to Achieve Higher Durability. Manuf. Technol. 2018, 18, 39–46. [Google Scholar] [CrossRef]
- Shiva, P.N.; Padmakumar, M.; Sarada, B. Experimental investigation to assess the effects of trumpet hone on tool life and surface quality in milling of AISI4140 steel. FME Trans. 2019, 47, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Padmakumar, M.; Shiva Pradeep, N. Effect of cutting edge form factor (K-factor) on the performance of a face milling tool. CIRP J. Manuf. Sci. Technol. 2020, 31, 305–313. [Google Scholar] [CrossRef]
- Ventura, C.; Chaves, H.S.; Rubio, J.C.C.; Abrão, A.M.; Denkena, B.; Breidenstein, B. The influence of the cutting tool microgeometry on the machinability of hardened AISI 4140 steel. Int. J. Adv. Manuf. Technol. 2017, 90, 2557–2565. [Google Scholar] [CrossRef]
- Arısoy, Y.M.; Özel, T. Prediction of machining induced microstructure in Ti–6Al–4V alloy using 3-D FE-based simulations: Effects of tool micro-geometry, coating and cutting conditions. J. Mater. Process. Technol. 2015, 220, 1–26. [Google Scholar] [CrossRef]
- Filho, A.F.; Da Silva, L.R.R.; Ruzzi, R.; Costa, E.S.; Sales, W.; Jackson, M.J.; Machado, Á.R. Influence of milling direction in the machinability of Inconel 718 with submicron grain cemented carbide tools. Int. J. Adv. Manuf. Technol. 2019, 105, 1343–1355. [Google Scholar] [CrossRef]
- Muthuswamy, P.; Arunachalam, M. Analyzing the effect of cutting parameters and tool nose radius on forces, machining power and tool life in face milling of ductile iron and validation using finite element analysis. Eng. Res. Express 2020, 2, 035003. [Google Scholar] [CrossRef]
- Xie, W.; Fang, F. Effect of tool edge radius on material removal mechanism in atomic and close-to-atomic scale cutting. Appl. Surf. Sci. 2020, 504, 144451. [Google Scholar] [CrossRef]
- Brown, I.; Schoop, J. The effect of cutting edge geometry, nose radius and feed on surface integrity in finish turning of Ti-6Al4V. Procedia CIRP 2020, 87, 142–147. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuang, K. Effect of cutting edge microgeometry on surface roughness and white layer in turning AISI 52100 steel. Procedia CIRP 2020, 87, 53–58. [Google Scholar] [CrossRef]
- Thiele, J.D.; Melkote, S.N. Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. J. Mater. Process. Technol. 1999, 94, 216–226. [Google Scholar] [CrossRef]
- Pawade, R.; Joshi, S.S.; Brahmankar, P. Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. Int. J. Mach. Tools Manuf. 2008, 48, 15–28. [Google Scholar] [CrossRef]
- Kumar, N.S.; Shetty, A.; Shetty, A.; Ananth, K.; Shetty, H. Effect of Spindle Speed and Feed Rate on Surface Roughness of Carbon Steels in CNC Turning. Procedia Eng. 2012, 38, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Nurhaniza, M.; Ariffin, M.K.A.M.; Mustapha, F.; Baharudin, B.T.H.T. Analyzing the Effect of Machining Parameters Setting to the Surface Roughness during End Milling of CFRP-Aluminium Composite Laminates. Int. J. Manuf. Eng. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Da Silva, L.R.R.; Filho, A.F.; Costa, E.S.; Pico, D.F.M.; Sales, W.; Guesser, W.L.; Machado, A.R. Cutting Temperatures in End Milling of Compacted Graphite Irons. Procedia Manuf. 2018, 26, 474–484. [Google Scholar] [CrossRef]
- Denkena, B.; Grove, T.; Maiss, O. Influence of the cutting edge radius on surface integrity in hard turning of roller bearing inner rings. Prod. Eng. 2015, 9, 299–305. [Google Scholar] [CrossRef]
- Choi, Y. Influence of rake angle on surface integrity and fatigue performance of machined surfaces. Int. J. Fatigue 2017, 94, 81–88. [Google Scholar] [CrossRef]
- Zhou, J.; Walter, H.; Andersson, M.; Stahl, J. Effect of chamfer angle on wear of PCBN cutting tool. Int. J. Mach. Tools Manuf. 2003, 43, 301–305. [Google Scholar] [CrossRef]
Elements | C | Mn | P | S | Fe |
---|---|---|---|---|---|
% | 0.65–0.75 | 0.8 | 0.04 | 0.04 | remaining |
Insert | Micro-Geometry on Cutting Edge | Micro-Geometry on Wiper Edge |
---|---|---|
A | Chamfer + radius | Radius |
B | Chamfer + sharp | Sharp |
C | Chamfer + radius | Chamfer + radius |
D | Radius | Radius |
Parameter | Detail | Parameter | Detail |
---|---|---|---|
Vc (m/min) | 70, 90, 110 | Coolant | Dry |
f (mm/tooth) | 0.10, 0.15, 0.20 | Work piece | SAE1070 |
Ap, (mm) | 2 | Tool diameter (mm) | Ø80 |
Ae, (mm) | 50 | Number of teeth | 1 (Fly cut) |
Radial Rake Angle | 3.5° | Axial rake angle | 8.5° |
Lead Angle | 75° | Insert relief angle | 11° |
Feed (mm/z) | Chip Thickness (mm) | |
---|---|---|
From 0 to 0.6 mm Depth of Cut | From 0.6 to 2 mm Depth of Cut | |
0.10 | 0.060 | 0.096 |
0.15 | 0.902 | 0.145 |
0.20 | 0.120 | 0.193 |
Vc (m/min) | Feed (mm/z) | Insert A | Insert B | Insert C | Insert D | ||||
---|---|---|---|---|---|---|---|---|---|
Ra (µm) | Rz (µm) | Ra (µm) | Rz (µm) | Ra (µm) | Rz (µm) | Ra (µm) | Rz (µm) | ||
70 | 0.10 | 1.61 | 9.64 | 0.45 | 3.12 | 1.26 | 7.42 | 1.54 | 8.39 |
70 | 0.15 | 1.51 | 8.49 | 0.66 | 4.19 | 1.48 | 7.86 | 0.95 | 5.87 |
70 | 0.20 | 1.63 | 9.28 | 0.99 | 5.86 | 1.14 | 6.85 | 1.20 | 7.21 |
90 | 0.10 | 1.63 | 9.77 | 0.50 | 3.32 | 0.98 | 5.82 | 0.94 | 5.80 |
90 | 0.15 | 1.43 | 8.11 | 0.57 | 3.57 | 1.21 | 6.76 | 1.12 | 6.84 |
90 | 0.20 | 1.41 | 8.51 | 0.42 | 2.62 | 0.83 | 5.06 | 0.86 | 5.57 |
110 | 0.10 | 1.58 | 9.23 | 0.70 | 4.03 | 1.16 | 6.11 | 1.23 | 7.04 |
110 | 0.15 | 1.53 | 8.85 | 0.49 | 3.37 | 0.93 | 5.63 | 0.91 | 5.42 |
110 | 0.20 | 1.19 | 7.31 | 0.62 | 3.80 | 0.82 | 5.20 | 0.99 | 6.03 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution |
---|---|---|---|---|---|---|
Insert | 3 | 3.67432 | 1.22477 | 50.69 | 0.000 | 76.02 |
Vc | 2 | 0.32127 | 0.16064 | 6.65 | 0.011 | 6.65 |
F | 2 | 0.09141 | 0.0457 | 1.89 | 0.193 | 1.89 |
Insert*Vc | 6 | 0.06891 | 0.01148 | 0.48 | 0.814 | 1.43 |
Insert*F | 6 | 0.22597 | 0.03766 | 1.56 | 0.241 | 4.67 |
Vc*F | 4 | 0.16183 | 0.04046 | 1.67 | 0.22 | 3.35 |
Error | 12 | 0.28993 | 0.02416 | 6.00 | ||
Total | 35 | 4.83363 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution |
---|---|---|---|---|---|---|
Insert | 3 | 114.265 | 38.0883 | 68.32 | 0.000 | 80.90 |
Vc | 2 | 8.401 | 4.2006 | 7.54 | 0.008 | 5.95 |
F | 2 | 1.832 | 0.9161 | 1.64 | 0.234 | 1.30 |
Insert*Vc | 6 | 1.979 | 0.3299 | 0.59 | 0.732 | 1.40 |
Insert*F | 6 | 4.777 | 0.7961 | 1.43 | 0.282 | 3.38 |
Vc*F | 4 | 3.297 | 0.8243 | 1.48 | 0.269 | 2.33 |
Error | 12 | 6.69 | 0.5575 | 4.74 | ||
Total | 35 | 141.241 |
Vc (m/min) | Feed (mm/z) | Fx (N) | Fy (N) | Fz (N) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Insert A | Insert B | Insert C | Insert D | Insert A | Insert B | Insert C | Insert D | Insert A | Insert B | Insert C | Insert D | ||
70 | 0.10 | 633 | 555 | 612 | 462 | 738 | 705 | 723 | 692 | 247 | 221 | 234 | 189 |
70 | 0.15 | 720 | 700 | 728 | 651 | 922 | 907 | 898 | 923 | 291 | 262 | 264 | 254 |
70 | 0.20 | 842 | 863 | 869 | 694 | 1063 | 1079 | 1096 | 1038 | 299 | 284 | 293 | 251 |
90 | 0.10 | 601 | 563 | 603 | 503 | 691 | 674 | 683 | 685 | 226 | 203 | 214 | 199 |
90 | 0.15 | 704 | 665 | 730 | 556 | 850 | 832 | 844 | 826 | 249 | 225 | 234 | 202 |
90 | 0.20 | 766 | 794 | 811 | 645 | 1012 | 1016 | 1057 | 1026 | 228 | 255 | 280 | 247 |
110 | 0.10 | 597 | 509 | 556 | 437 | 665 | 614 | 660 | 627 | 231 | 179 | 205 | 170 |
110 | 0.15 | 684 | 611 | 681 | 540 | 833 | 849 | 873 | 835 | 244 | 234 | 248 | 221 |
110 | 0.20 | 786 | 679 | 712 | 583 | 1015 | 961 | 981 | 923 | 264 | 229 | 263 | 204 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution |
---|---|---|---|---|---|---|
Insert | 3 | 115,261 | 38,420 | 69.07 | 0.000 | 27.27 |
Vc | 2 | 38,362 | 19,181 | 34.48 | 0.000 | 9.08 |
F | 2 | 243,582 | 121,791 | 218.94 | 0.000 | 57.63 |
Insert*Vc | 6 | 5492 | 915 | 1.65 | 0.218 | 1.30 |
Insert*F | 6 | 4718 | 786 | 1.41 | 0.287 | 1.12 |
Vc*F | 4 | 8565 | 2141 | 3.85 | 0.031 | 2.03 |
Error | 12 | 6675 | 556 | 1.58 | ||
Total | 35 | 422,656 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution |
---|---|---|---|---|---|---|
Insert | 3 | 4520 | 1507 | 3.83 | 0.039 | 0.59 |
Vc | 2 | 38168 | 19,084 | 48.51 | 0.000 | 5.01 |
F | 2 | 705,638 | 352,819 | 896.76 | 0.000 | 92.62 |
Insert*Vc | 6 | 1414 | 236 | 0.6 | 0.727 | 0.19 |
Insert*F | 6 | 1903 | 317 | 0.81 | 0.584 | 0.25 |
Vc*F | 4 | 5501 | 1375 | 3.5 | 0.041 | 0.72 |
Error | 12 | 4721 | 393 | 0.62 | ||
Total | 35 | 761,864 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | % Contribution |
---|---|---|---|---|---|---|
Insert | 3 | 7976 | 2658.8 | 16.13 | 0.000 | 22.38 |
Vc | 2 | 7484 | 3742.2 | 22.7 | 0.000 | 21.00 |
F | 2 | 14775 | 7387.5 | 44.81 | 0.000 | 41.45 |
Insert*Vc | 6 | 1147 | 191.2 | 1.16 | 0.388 | 3.22 |
Insert*F | 6 | 1129 | 188.2 | 1.14 | 0.397 | 3.17 |
Vc*F | 4 | 1151 | 287.9 | 1.75 | 0.205 | 3.23 |
Error | 12 | 1979 | 164.9 | 5.55 | ||
Total | 35 | 35,642 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muthuswamy, P.; Nagarajan, S.K. Experimental Investigation on the Effect of Different Micro-Geometries on Cutting Edge and Wiper Edge on Surface Roughness and Forces in Face Milling. Lubricants 2021, 9, 102. https://doi.org/10.3390/lubricants9100102
Muthuswamy P, Nagarajan SK. Experimental Investigation on the Effect of Different Micro-Geometries on Cutting Edge and Wiper Edge on Surface Roughness and Forces in Face Milling. Lubricants. 2021; 9(10):102. https://doi.org/10.3390/lubricants9100102
Chicago/Turabian StyleMuthuswamy, Padmakumar, and Sathish Kumar Nagarajan. 2021. "Experimental Investigation on the Effect of Different Micro-Geometries on Cutting Edge and Wiper Edge on Surface Roughness and Forces in Face Milling" Lubricants 9, no. 10: 102. https://doi.org/10.3390/lubricants9100102
APA StyleMuthuswamy, P., & Nagarajan, S. K. (2021). Experimental Investigation on the Effect of Different Micro-Geometries on Cutting Edge and Wiper Edge on Surface Roughness and Forces in Face Milling. Lubricants, 9(10), 102. https://doi.org/10.3390/lubricants9100102