Numerical and Experimental Analysis of the Potential Fuel Savings and Reduction in CO Emissions by Implementing Cylinder Bore Coating Materials Applied to Diesel Engines
Abstract
:1. Introduction
2. Mathematical Model
2.1. Kinematic Piston Model
2.2. Lubrication Properties
2.3. Kinetic Piston Model
- Radial inertial forces are neglected due to the stiffness of the piston body, which is the consequence of the proper adjustment of the inner diameter of the ring [50].
- The axial damping force is determined by means of the Reynolds equation since this is the main equation used in the literature to describe the hydrodynamic behavior between the ring and the cylinder liner [45].
- The pressure and behavior of the combustion gases are considered in a steady state.
- Flow processes are considered isothermal. This consideration is appropriate because of the relatively low velocity of flow over the compression ring groove [51].
2.4. Blow-By Losses Model
2.5. Compression Ring Thermal Model
2.6. Fuel Consumption and CO Emission Model
3. Numerical Methodology
3.1. Experimental Test Bench
3.2. Uncertainty Analysis
3.3. Material Properties
3.4. Numerical Procedure
4. Results and Discussion
4.1. Experimental Validation
4.2. Friction Force Analysis
4.3. Temperature and Heat Flow Analysis
4.4. Power Loss Analysis
4.5. Fuel Economy
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Nomenclature | |
NNC | Nickel nanocomposite |
DLC | Diamond-like carbon |
CO | Carbon monoxide |
ICE | Internal combustion engine |
Piston velocity | |
Piston acceleration | |
Longitude | |
Horizontal distance between the axis of movement of the piston and the crankshaft | |
P | Pressure |
T | Temperature |
Model constant | |
S | Thermo-viscosity indices |
Z | Lubricant piezo-viscosity |
Model constant | |
Lubrication film thickness | |
F | Force |
m | Mass |
Asperity contact pressure | |
Pressure coefficient of boundary shear | |
Young’s modulus | |
Commutation function | |
Film thickness ratio | |
Poisson ratio | |
Upstream pressure wave | |
R | Gas constant |
Coefficient of discharge | |
Valve area | |
Specific heat ratio | |
Diameter of the valve | |
Heat flow | |
R | Thermal resistance |
Convection coefficient | |
Equivalent length | |
Lower calorific value | |
Mass flow | |
Air/fuel ratio | |
Greek Letters | |
Angle of rotation of the crankshaft | |
Angular velocity | |
Angle formed between the axis of movement of the connecting rod and the piston | |
Density | |
Coefficient of thermal expansion | |
Viscosity | |
Surface roughness | |
Equivalence relation | |
Subscripts | |
Crankshaft | |
Connecting rod | |
Environmental conditions | |
Hydrodinamic | |
Friction | |
r | Compression ring |
Asperities | |
Cylinder liner | |
cc | Combustion chamber |
Lubricating oil | |
Total | |
Contact surfaces | |
cs | Coated surfaces |
Cylinder bore | |
rr | Real |
ss | Stoichiometric |
Fuel |
References
- Forero, J.D.; Taborda, L.L.; Silvera, A.B. Characterization of the Performance of Centrifugal Pumps Powered by a Diesel Engine in Dredging Applications. Int. Rev. Mech. Eng. (IREME) 2019, 13, 11. [Google Scholar] [CrossRef]
- Orozco, T.; Herrera, M.; Forero, J.D. CFD Study of Heat Exchangers Applied in Brayton Cycles: A Case Study in Supercritical Condition Using Carbon Dioxide as Working Fluid. Int. Rev. Model. Simulations (IREMOS) 2019, 12, 72–81. [Google Scholar] [CrossRef]
- Obregon, L.; Valencia, G.; Forero, J.D. Efficiency Optimization Study of a Centrifugal Pump for Industrial Dredging Applications Using CFD. Int. Rev. Model. Simulations (IREMOS) 2019, 12, 245. [Google Scholar] [CrossRef]
- Ochoa, G.V.; Peñaloza, C.A.; Forero, J.D. Thermo-Economic Assessment of a Gas Microturbine-Absorption Chiller Trigeneration System under Different Compressor Inlet Air Temperatures. Energies 2019, 12, 4643. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317. [Google Scholar] [CrossRef] [Green Version]
- Amador, G.; Forero, J.D.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V.; Orozco, W. Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number. J. Energy Resour. Technol. 2017, 139, 042205. [Google Scholar] [CrossRef]
- Duarte, J.; Garcia, J.; Jiménez, J.; Sanjuan, M.E.; Bula, A.; González, J. Auto-Ignition Control in Spark-Ignition Engines Using Internal Model Control Structure. J. Energy Resour. Technol. 2017, 139, 022201. [Google Scholar] [CrossRef]
- Orozco, W.; Acuña, N.; Forero, J.D. Characterization of Emissions in Low Displacement Diesel Engines Using Biodiesel and Energy Recovery System. Int. Rev. Mech. Eng. (IREME) 2017, 13, 420. [Google Scholar] [CrossRef]
- Rahnejat, H. Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends; Woodhead Publishing: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Richardson, D.E. Review of Power Cylinder Friction for Diesel Engines. J. Eng. Gas Turbines Power 2000, 122, 506–519. [Google Scholar] [CrossRef]
- Ochoa, G.V.; Gutierrez, J.C.; Forero, J.D. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Holmberg, K.; Andersson, P.; Nylund, N.-O.; Mäkelä, K.; Erdemir, A. Global energy consumption due to friction in trucks and buses. Tribol. Int. 2014, 78, 94–114. [Google Scholar] [CrossRef]
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Ma, M.-T.; Sherrington, I.; Smith, E.H. Analysis of lubrication and friction for a complete piston-ring pack with an improved oil availability model: Part 1: Circumferentially uniform film. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1997, 211, 1–15. [Google Scholar] [CrossRef]
- Ma, Z.; Henein, N.A.; Bryzik, W. A Model for Wear and Friction in Cylinder Liners and Piston Rings. Tribol. Trans. 2006, 49, 315–327. [Google Scholar] [CrossRef]
- Mishra, P.C.; Balakrishnan, S.; Rahnejat, H. Tribology of compression ring-to-cylinder contact at reversal. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2008, 222, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.C. Tribodynamic modeling of piston compression ring and cylinder liner conjunction in high-pressure zone of engine cycle. Int. J. Adv. Manuf. Technol. 2013, 66, 1075–1085. [Google Scholar] [CrossRef]
- Rahmani, R.; Theodossiades, S.; Rahnejat, H.; Fitzsimons, B. Transient elastohydrodynamic lubrication of rough new or worn piston compression ring conjunction with an out-of-round cylinder bore. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 284–305. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.; Theodossiades, S.; Rahmani, R.; Rahnejat, H.; Fitzsimons, B. On the Transient Three-Dimensional Tribodynamics of Internal Combustion Engine Top Compression Ring. J. Eng. Gas Turbines Power 2017, 139, 062801. [Google Scholar] [CrossRef]
- Morris, N.; Rahmani, R.; Rahnejat, H.; King, P.D.; Fitzsimons, B. Tribology of piston compression ring conjunction under transient thermal mixed regime of lubrication. Tribol. Int. 2013, 59, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, R.; Rahnejat, H.; Fitzsimons, B.; Dowson, D. The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction. Appl. Energy 2017, 191, 568–581. [Google Scholar] [CrossRef] [Green Version]
- Morris, N.; Mohammadpour, M.; Rahmani, R.; Johns-Rahnejat, P.M.; Rahnejat, H.; Dowson, D. Effect of cylinder deactivation on tribological performance of piston compression ring and connecting rod bearing. Tribol. Int. 2018, 120, 243–254. [Google Scholar] [CrossRef]
- Saidur, R.; Rezaei, M.; Muzammil, W.K.; Hassan, M.H.; Paria, S.; Hasanuzzaman, M. Technologies to recover exhaust heat from internal combustion engines. Renew. Sustain. Energy Rev. 2012, 16, 5649–5659. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, X.; Wen, C.; Yu, S.; Zhou, Z. On the oil-gas-solid mixed bearing between compression ring and cylinder liner under starved lubrication and high boundary pressures. Tribol. Int. 2019, 140, 105869. [Google Scholar] [CrossRef]
- Roensch, M.M. Piston-Ring Coatings and Their Effect on Ring and Bore Wear. SAE Trans. 1940, 221–228. [Google Scholar] [CrossRef]
- Howell-Smith, S.; Rahnejat, H.; King, P.D.; Dowson, D. Reducing in-cylinder parasitic losses through surface modification and coating. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Dahotre, N.B.; Nayak, S. Nanocoatings for engine application. Surf. Coatings Technol. 2005, 194, 58–67. [Google Scholar] [CrossRef]
- Rejowski, E.D.; Mordente, P., Sr.; Pillis, M.F.; Casserly, T. Application of DLC Coating in Cylinder Liners for Friction Reduction; Technical Paper; SAE: Warrendale, PA, USA, 2012. [Google Scholar]
- Yuan, C.; Ren, H.; Xu, J. Experiment on the ignition performances of a free-piston diesel engine alternator. Appl. Therm. Eng. 2018, 134, 537–545. [Google Scholar] [CrossRef]
- Kim, D.; Ito, A.; Ishikawa, Y.; Osawa, K.; Iwasaki, Y. Friction Characteristics of Steel Pistons for Diesel Engines. J. Mater. Res. Technol. 2012, 1, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.-C.; Ripin, Z.M. Technique to determine instantaneous piston skirt friction during piston slap. Tribol. Int. 2014, 74, 145–153. [Google Scholar] [CrossRef]
- Moffat, A.; Barnes, S.; Mellor, B.; Reed, P. The effect of silicon content on long crack fatigue behaviour of aluminium–silicon piston alloys at elevated temperature. Int. J. Fatigue 2005, 27, 1564–1570. [Google Scholar] [CrossRef]
- Yao, Z.-M.; Qian, Z.-Q.; Li, R.; Hu, E. Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy. Energy 2019, 176, 991–1006. [Google Scholar] [CrossRef]
- Mahato, A.; Xia, S.; Perry, T.; Sachdev, A.; Biswas, S.K. Role of silicon in resisting subsurface plastic deformation in tribology of aluminium–silicon alloys. Tribol. Int. 2010, 43, 381–387. [Google Scholar] [CrossRef]
- Vural, E. The Study of Microstructure and Mechanical Properties of Diesel Engine Piston Coated with Carbide Composites by Using HVOF Method. Trans. Indian Inst. Met. 2020, 73, 2613–2622. [Google Scholar] [CrossRef]
- Vadivel, A.; Periyasamy, S. Experimental Investigation of Thermal Barrier (8YSZ-MGO-TIO2) Coated Piston used in Diesel Engine. J. Appl. Fluid Mech. 2020, 13, 1157–1165. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.-R.; Zhao, W.-H.; Kang, Y.-N.; Liu, F.-S. Effect of Layered-Port VVT on Performance of Opposed-Piston Two-Stroke Diesel Engine. J. Energy Eng. 2019, 145, 04019027. [Google Scholar] [CrossRef]
- Yao, Z.; Hu, K.; Li, R. Enhanced high-temperature thermal fatigue property of aluminum alloy piston with Nano PYSZ thermal barrier coatings. J. Alloys Compd. 2019, 790, 466–479. [Google Scholar] [CrossRef]
- Nguyen, C.L.; Preston, A.; Tran, A.T.; Dickinson, M.; Metson, J.B. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures. Appl. Surf. Sci. 2016, 377, 174–179. [Google Scholar] [CrossRef]
- Chen, W.-C.; Lin, H.-M.; Uan, J.-Y. Formation and characterization of self-lubricated carbide layer on AA6082 Al–Mg–Si aluminum alloy by electrical discharge alloying process. Trans. Nonferrous Met. Soc. China 2016, 26, 3205–3218. [Google Scholar] [CrossRef]
- Chi, Y.; Gu, G.; Yu, H.; Chen, C. Laser surface alloying on aluminum and its alloys: A review. Opt. Lasers Eng. 2018, 100, 23–37. [Google Scholar] [CrossRef]
- Perera, M.S.M.; Theodossiades, S.; Rahnejat, H. Elasto-multi-body dynamics of internal combustion engines with tribological conjunctions. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 2010, 224, 261–277. [Google Scholar] [CrossRef] [Green Version]
- Consuegra, F.; Bula, A.; Guillín, W.; Sánchez, J.; Forero, J.D. Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines. Energies 2019, 12, 1437. [Google Scholar] [CrossRef] [Green Version]
- Lyubarskyy, P.; Bartel, D. 2D CFD-model of the piston assembly in a diesel engine for the analysis of piston ring dynamics, mass transport and friction. Tribol. Int. 2016, 104, 352–368. [Google Scholar] [CrossRef]
- Cui, J.; Yang, P.; Jin, Z.M.; Dowson, D. Transient elastohydrodynamic analysis of elliptical contacts. Part 3: Non-Newtonian lubricant solution under isothermal and thermal conditions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2007, 221, 63–73. [Google Scholar] [CrossRef]
- Houpert, L. New Results of Traction Force Calculations in Elastohydrodynamic Contacts. J. Tribol. 1985, 107, 241–245. [Google Scholar] [CrossRef]
- Delprete, C.; Razavykia, A.; Baldissera, P. Detailed analysis of piston secondary motion and tribological performance. Int. J. Engine Res. 2020, 21, 1647–1661. [Google Scholar] [CrossRef]
- Sonthalia, A.; Kumar, R.R. The effect of compression ring profile on the friction force in an internal combustion engine. Tribol. Ind. 2013, 35, 74–83. [Google Scholar]
- Ali, M.K.A.; Xianjun, H.; Turkson, R.F.; Ezzat, M. An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 2016, 230, 329–349. [Google Scholar] [CrossRef]
- Husain, S.Q.; Singh, K.P. Calculation of Lubricating Oil Film Thickness between Piston Rings and Cylinder Liner. In Proceedings of the 1st National Conference on Advances in Mechanical Engineering (NCAME 2011), Chandigarh, India, 20–21 May 2011. [Google Scholar]
- Zavos, A.B.; Nikolakopoulos, P.G. Simulation of piston ring tribology with surface texturing for internal combustion engines. Lubr. Sci. 2015, 27, 151–176. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Rahnejat, H. Isothermal transient analysis of piston skirt-to-cylinder wall contacts under combined axial, lateral and tilting motion. J. Phys. D Appl. Phys. 2005, 38, 787–799. [Google Scholar] [CrossRef]
- Booker, J.F. Basic Equations for Fluid Films with Variable Properties. J. Tribol. 1989, 111, 475–479. [Google Scholar] [CrossRef]
- Irimescu, A.; Di Iorio, S.; Merola, S.S.; Sementa, P.; Vaglieco, B.M. Evaluation of compression ratio and blow-by rates for spark ignition engines based on in-cylinder pressure trace analysis. Energy Convers. Manag. 2018, 162, 98–108. [Google Scholar] [CrossRef]
- Zucrow, M.J.; Hoffman, J.D. Gas Dynamics. In Fundamental Fluid Mechanics for the Practicing Engineer; CRC Press: Boca Raton, FL, USA, 2018; pp. 198–297. [Google Scholar]
- Dieck, R.H. Measurement Uncertainty: Methods and Applications, 4th ed.; ISA: Durham, NC, USA, 2007. [Google Scholar]
- Umer, J.; Morris, N.J.; Leighton, M.; Rahmani, R.; Howell-Smith, S.; Wild, R.; Rahnejat, H. Asperity level tribological investigation of automotive bore material and coatings. Tribol. Int. 2018, 117, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Tomanik, E.; Profito, F.J.; Zachariadis, D.C. Modelling the hydrodynamic support of cylinder bore and piston rings with laser textured surfaces. Tribol. Int. 2013, 59, 90–96. [Google Scholar] [CrossRef]
- Humphrey, E.; Morris, N.J.; Rahmani, R.; Rahnejat, H. Multiscale boundary frictional performance of diamond like carbon coatings. Tribol. Int. 2020, 149, 105539. [Google Scholar] [CrossRef]
- Zavos, A.; Nikolakopoulos, P.G. Tribology of new thin compression ring of fired engine under controlled conditions—A combined experimental and numerical study. Tribol. Int. 2018, 128, 214–230. [Google Scholar] [CrossRef]
- Koch, F.; Decker, P.; Gülpen, R.; Quadflieg, F.-J.; Loeprecht, M. Cylinder Liner Deformation Analysis—Measurements and Calculations; Technical Paper; SAE: Warrendale, PA, USA, 1998. [Google Scholar] [CrossRef]
- Gore, M.; Theaker, M.; Howell-Smith, S.; Rahnejat, H.; King, P.D. Direct measurement of piston friction of internal-combustion engines using the floating-liner principle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 344–354. [Google Scholar] [CrossRef] [Green Version]
- ExxonMobil. The Outlook for Energy: A View to 2040 Contents. 2017. Available online: http://oilproduction.net/files/2017_Outlook_for_Energy_highlights.pdf (accessed on 12 December 2020).
Properties | |
---|---|
Upper explosion limit | 6.5 vol% |
Lower explosion limit | 0.6 vol% |
Viscosity at 40 °C | 91.76 mm2/s |
Flashpoint | 224 °C (DIN ISO 2592) |
Density at 20 °C | 0.864 g/cm3 (DIN 51757) |
Pourpoint | −33 °C (ISO 3016) |
Model | SK-MDF300 |
---|---|
Manufacturer | SOKAN |
Cycle | 4 Strokes |
Bore x stroke | 78 mm |
Stroke | 62.57 mm |
Engine type | 1 cylinder |
Maximum power | 3.43 kW |
Compression ratio | 20:1 |
Injection system | Direct injection |
Intake system | Naturally Aspirated |
Displaced volume | 299 CC |
Crankshaft radius | 48 mm |
Piston radius | 39 mm |
Length of connecting rod | 106 mm |
Instrument | Parameter | Manufacturer | Range | |||
---|---|---|---|---|---|---|
Air mass sensor | Airflow | BOSCH OE-22680 7J600 | 0–125 g/s | ±1.10 | ±1.02 | ±1.5 |
Piezoelectric transducer | Cylinder pressure | KISTLER type 7063-A | 0–250 bar | ±0.38 | ±0.32 | ±0.5 |
Gravimetric meter | Fuel measuring | OHAUS—PA313 | 0–310 g | ±1.06 | ±0.91 | ±1.4 |
Crankshaft Position Sensors | Angle | Beck Arnley 180-0420 | 5–9999 RPM | ±0.73 | ±0.68 | ±1.0 |
Temperature sensor | Temperature | Type K | −200–1370 °C | ±0.52 | ±0.46 | ±0.7 |
Parameter | Unit | Cylinder Bore Surface | ||
---|---|---|---|---|
Steel 4340 | NNC | DLC | ||
Density | kg/m3 | 7850 | 5175 | 3510 |
Thermal conductivity | W/mK | 34.3 | 42.1 | 4.5 |
Poisson’s ratio | - | 0.31 | 0.31 | 0.22 |
Specific heat capacity | J/kgK | 520 | 566 | 1300 |
Young’s modulus of elasticity | GPa | 200 | 165 | 210 |
Pressure coefficient of boundary shear | - | 0.170 | 0.149 | 0.219 |
Parameter | Unit | TiN |
---|---|---|
Density | kg/m3 | 5220 |
Thermal conductivity | W/mK | 19.2 |
Poisson’s ratio | - | 0.25 |
Specific heat capacity | J/kgK | 484.9 |
Young’s modulus of elasticity | GPa | 251 |
Parameter | Value |
---|---|
Overall width | 4.55 mm |
Gauge resistance | 120 |
Maximum operating temperature | 1150 °C |
Grid width | 4.55 mm |
Overall length | 6.30 mm |
Gage length | 2.54 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abril, S.O.; García, C.P.; León, J.P. Numerical and Experimental Analysis of the Potential Fuel Savings and Reduction in CO Emissions by Implementing Cylinder Bore Coating Materials Applied to Diesel Engines. Lubricants 2021, 9, 19. https://doi.org/10.3390/lubricants9020019
Abril SO, García CP, León JP. Numerical and Experimental Analysis of the Potential Fuel Savings and Reduction in CO Emissions by Implementing Cylinder Bore Coating Materials Applied to Diesel Engines. Lubricants. 2021; 9(2):19. https://doi.org/10.3390/lubricants9020019
Chicago/Turabian StyleAbril, Sofia Orjuela, Carlos Pardo García, and Jhon Pabón León. 2021. "Numerical and Experimental Analysis of the Potential Fuel Savings and Reduction in CO Emissions by Implementing Cylinder Bore Coating Materials Applied to Diesel Engines" Lubricants 9, no. 2: 19. https://doi.org/10.3390/lubricants9020019
APA StyleAbril, S. O., García, C. P., & León, J. P. (2021). Numerical and Experimental Analysis of the Potential Fuel Savings and Reduction in CO Emissions by Implementing Cylinder Bore Coating Materials Applied to Diesel Engines. Lubricants, 9(2), 19. https://doi.org/10.3390/lubricants9020019