Tribocorrosion Evaluation of Nb2O5, TiO2, and Nb2O5 + TiO2 Coatings for Medical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Films Deposition
2.2. Morphological and Surface Characterization
2.3. Wear-Corrosion
3. Results
3.1. AFM Measurements
3.2. Electrochemical Analysis
3.3. Coefficient of Friction and Wear Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarmiento-González, A.; Encinar, J.R.; Marchante-Gayón, J.M.; Sanz-Medel, A. Titanium levels in the organs and blood of rats with a titanium implant, in the absence of wear, as determined by double-focusing ICP-MS. Anal. Bioanal. Chem. 2009, 393, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, G.; Rodil, S.E.; Arzate, H.; Muhl, S.; Olaya, J.J. Niobium based coatings for dental implants. Appl. Surf. Sci. 2011, 257, 2555–2559. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Munir, K.S.; Lin, J.; Wen, C. Titanium-niobium pentoxide composites for biomedical applications. Bioact. Mater. 2016, 1, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Ou, K.L.; Weng, C.C.; Lin, Y.H.; Huang, M.S. A promising of alloying modified beta-type Titanium-Niobium implant for biomedical applications: Microstructural characteristics, in vitro biocompatibility and antibacterial performance. J. Alloys Compd. 2017, 697, 231–238. [Google Scholar] [CrossRef]
- Gabriel, S.B. Characterization of a new beta titanium alloy, Ti–12Mo–3Nb, for biomedical applications. J. Alloys Compd. 2012, 536, S208–S210. [Google Scholar] [CrossRef]
- Latchford, I.; Riposan, A.; Kudiravstev, V.; Bluck, T.; Smith, C. Cost of ownership analysis for high productivity thin film PVD system. In Proceedings of the 2014 Technical Conference, Philadelphia, PA, USA, 19–20 June 2014; Society of Vacuum Coaters: Albuquerque, NM, USA, 2014. [Google Scholar]
- Chen, W.A. A market analysis for PVD coating system of by project submitted in partial fulfillment. Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 2012. [Google Scholar]
- Ibrahim, Z.; Sarhan, A.D.; Yusuf, F.; Hamdi, M. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants—A review article. J. Alloys Compd. 2017, 714, 636–667. [Google Scholar] [CrossRef]
- Yanisarapan, T.; Thunyakitpisal, P.; Chantarawaratit, P. Corrosion of metal orthodontic brackets and archwires caused by fluoride-containing products: Cytotoxicity, metal ion release and surface roughness. Orthod. Waves. 2018, 77, 79–89. [Google Scholar] [CrossRef]
- Hasegawa, M.; Wakabayashi, H.; Sudo, A. A case of bone necrosis with pseudotumor following metal-on-metal total hip arthroplasty. Arthroplast. Today 2017, 4, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Li, J.J.; Sydney, N.; Health, L.; Leonards, S. Tissue Response to Biomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Eisenbarth, J.B.E.; Velten, D.; Müller, M.; Thull, R. Nanostructured niobium oxide coatings influence osteoblast adhesion. Clin. Exp. Rheumatol. 2015, 33, 97–103. [Google Scholar] [CrossRef]
- Sowa, M.; Greń, K.; Kukharenko, A.I.; Korotin, D.M.; Michalska, J.; Szyk-Warszyńska, L.; Mosiałek, M.; Zak, J.; Pamuła, E.; Kurmaev, E.Z.; et al. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium. Mater. Sci. Eng. C 2014, 42, 529–537. [Google Scholar] [CrossRef]
- Pauline, S.A.; Rajendran, N. Corrosion behaviour and biocompatibility of nanoporous niobium incorporated titanium oxide coating for orthopaedic applications. Ceram. Int. 2017, 43, 1731–1739. [Google Scholar] [CrossRef]
- Kumar, P.; Duraipandy, N.; Manikantan Syamala, K.; Rajendran, N. Antibacterial effects, biocompatibility and electrochemical behavior of zinc incorporated niobium oxide coating on 316L SS for biomedical applications. Appl. Surf. Sci. 2018, 427, 1166–1181. [Google Scholar] [CrossRef]
- Rodriguez-Barrero, S.; Fernández-Larrinoa, J.; Azkona, I.; López de la calle, L.N.; Polvorosa, R. Enhanced performance of nanostructured coatings for drilling by droplet elimination. Mater. Manuf. Process. 2016, 31, 593–602. [Google Scholar] [CrossRef]
- Polvorosa, R.; Suárez, A.; López de la calle, L.N.; Cerillo, I.; Wretland, A.; Veiga, F. Tool wear on nickel alloys with different coolant pressures: Comparison of Alloy 718 and Waspaloy. J. Manuf. Process. 2017, 26, 44–56. [Google Scholar] [CrossRef]
- Bono, J.V.; McCarthy, J.C. Revision Total Hip Arthroplasty; Springer: New York, NY, USA, 1999. [Google Scholar]
- Luo, Y.; Yang, L.; Tian, M. 3-Application of biomedical-grade titanium alloys in trabecular bone and artificial joints Biomaterials and Medical Tribology. In Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Cambridge, UK, 2013; pp. 181–216. [Google Scholar]
- Bait, L.; Azzouz, L.; Madaoui, N.; Saoula, N. Influence of substrate bias voltage on the properties of TiO2 deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications. Appl. Surf. Sci. 2017, 395, 72–77. [Google Scholar] [CrossRef]
- Yetim, T. An investigation of the corrosion properties of Ag-doped TiO2-coated commercially pure titanium in different biological environments. Surf. Coat. Technol. 2017, 309, 790–794. [Google Scholar] [CrossRef]
- Devikala, S.; Kamaraj, P.; Arthanareeswari, M. Corrosion resistance behavior of PVA/TiO2 composite in 3.5% NaCl. Mater. Today Proc. 2018, 5, 8672–8677. [Google Scholar] [CrossRef]
- Rojas, P.N.; Rodil, S.E. Corrosion behavior of amorphous niobium oxide coatings. Int. J. Electrochem. Sci. 2012, 7, 1443–1458. [Google Scholar]
- Wang, H.; Zang, R.; Yuan, Z.; Shu, X.; Liu, E.; Han, Z. A comparative study of the corrosion performance of titanium (Ti), titanium nitride (TiN), titanium dioxide (TiO2) and nitrogen-doped titanium oxides (N–TiO2), as coatings for biomedical applications. Ceram. Int. 2015, 41, 11844–11855. [Google Scholar] [CrossRef]
- Yetim, T. Corrosion behavior of Ag-doped TiO2 coatings on commercially pure titanium in simulated body fluid solution. J. Bionic Eng. 2016, 13, 397–405. [Google Scholar] [CrossRef]
- Blau, P.J. On the nature of running-in. Tribol. Int. 2005, 38, 1007–1012. [Google Scholar] [CrossRef]
- Blau, P. Friction Science and Technology; CRC Press: Boca Raton, FL, USA, 2008; Volume 20084465. [Google Scholar]
- Vieira, A.C.; Ribeiro, A.R.; Rocha, L.A.; Celis, J.P. Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear 2006, 261, 994–1001. [Google Scholar] [CrossRef]
Parameter | Quantity |
---|---|
Applied load | 5 N |
Velocity | 50 rpm |
Time of the test | 60 min |
System | Rsoln (Ω) | Rpo (Ω) | Rcor (Ω) | Cc (µF) | n | Ccor (µF) | m |
---|---|---|---|---|---|---|---|
Nb2O5 + TiO2 | 3.5 | 54.56 | 2.84 | 67.81 | 0.72 | 462.3 | 0.98 |
Nb2O5 | 3.1 | 52.8 | 0.40 | 88.44 | 0.76 | 1.041 | 0.97 |
TiO2 | 3.2 | 63.47 | 16.23 | 69.08 | 0.78 | 69.8 | 0.98 |
System | Beta A (V/decade) | Beta C (V/decade) | Ecorr (mV) | Icorr (A·cm−2) | Vcorr (mpy) |
---|---|---|---|---|---|
Nb2O5 | 75.60 × 10−3 | 123.0 × 10−3 | −0.17 | 2.21 × 10−5 | 6.562 |
Nb2O5 + TiO2 | 99.60 × 10−3 | 118.9 × 10−3 | −0.24 | 2.57 × 10−6 | 1.997 |
TiO2 | 91.80 × 10−3 | 154.4 × 10−3 | −0.33 | 9.33 × 10−7 | 807.7 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orozco-Hernández, G.; Durán, P.G.; Aperador, W. Tribocorrosion Evaluation of Nb2O5, TiO2, and Nb2O5 + TiO2 Coatings for Medical Applications. Lubricants 2021, 9, 49. https://doi.org/10.3390/lubricants9050049
Orozco-Hernández G, Durán PG, Aperador W. Tribocorrosion Evaluation of Nb2O5, TiO2, and Nb2O5 + TiO2 Coatings for Medical Applications. Lubricants. 2021; 9(5):49. https://doi.org/10.3390/lubricants9050049
Chicago/Turabian StyleOrozco-Hernández, Giovany, Pablo Guzmán Durán, and William Aperador. 2021. "Tribocorrosion Evaluation of Nb2O5, TiO2, and Nb2O5 + TiO2 Coatings for Medical Applications" Lubricants 9, no. 5: 49. https://doi.org/10.3390/lubricants9050049
APA StyleOrozco-Hernández, G., Durán, P. G., & Aperador, W. (2021). Tribocorrosion Evaluation of Nb2O5, TiO2, and Nb2O5 + TiO2 Coatings for Medical Applications. Lubricants, 9(5), 49. https://doi.org/10.3390/lubricants9050049