Experimental Study of the Lubrication Mechanism of Micro-Spherical Solid Particles between Flat Surfaces
Abstract
:1. Introduction
2. Experimental Section
2.1. Description of the Optical Micro-Sliding Instrument
2.2. Analysis of Contact Area and Image Processing
2.3. Experimental Procedure
3. Results and Discussion
3.1. In Situ Visualization of Contact Interface
3.2. Micro-Sliding Investigation
3.3. Analysis of the Motion of the Microsphere between Flat Surfaces
4. Conclusions
- (1)
- The spherical particles had a diameter ranging from 41 to 48 μm and this is useful to accommodate for the irregularities caused by the surface roughness and/or condition of mating surfaces.
- (2)
- In micro-sliding experiments, it was shown that the velocity of the center of the steel microsphere was half the velocity of the lower disk, and friction force measurements revealed a very low coefficient of friction (about 0.03), confirming the pure rolling motion of the microspheres.
- (3)
- The key outcome of this study was the verification of the assumption that spherical particles can be used to prevent direct contact and introduce rolling motion between mating surfaces.
- (4)
- This outcome supports the idea that micro- and nano-sized spherical particles can be utilized as ball bearings at the microscale to improve the tribological behavior of current lubricant oils.
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamrock, B.J.; Schmid, S.R.; Jacobson, B.O. Fundamentals of Fluid Film Lubrication; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Sun, J.; Du, S. Application of graphene derivatives and their nanocomposites in tribology and lubrication: A review. RSC Adv. 2019, 9, 40642–40661. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.C.; Jiang, S.Z. Influence of graphene/copper hybrid nanoparticle additives on tribological properties of solid cellulose lubricants. Surf. Coat. Technol. 2020, 389, 125655. [Google Scholar] [CrossRef]
- He, G.; Li, Y.; Wu, L.; Wang, Y.; Liu, M.; Yuan, J.; Men, X. Synergy of core-shell Cu@ rGO hybrids for significantly improved thermal and tribological properties of polyimide composites. Tribol. Int. 2021, 161, 107091. [Google Scholar] [CrossRef]
- Kalin, M.; Kogovšek, J.; Remskar, M. Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear 2012, 280–281, 36–45. [Google Scholar] [CrossRef]
- Wu, Y.; Tsui, W.; Liu, T. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 2007, 262, 819–825. [Google Scholar] [CrossRef]
- Tang, Z.; Li, S. A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 2014, 18, 119–139. [Google Scholar] [CrossRef]
- Singh, Y.; Sharma, A.; Singh, N.; Singla, A. Effect of alumina nanoparticles as additive on the friction and wear behavior of polanga-based lubricant. SN Appl. Sci. 2019, 1, 281. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.M.; Ohmae, N. Nanolubricants; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 13. [Google Scholar]
- Manu, B.R.; Gupta, A.; Jayatissa, A.H. Tribological Properties of 2D Materials and Composites—A Review of Recent Advances. Materials 2021, 14, 1630. [Google Scholar] [CrossRef]
- Alazemi, A.A.; Dysart, A.D.; Pol, V.G. Experimental Investigation of the Mechanical and Surface Properties of Sub-Micron Carbon Spheres. Lubricants 2020, 8, 77. [Google Scholar] [CrossRef]
- Ghaednia, H.; Jackson, R.L. The Effect of Nanoparticles on the Real Area of Contact, Friction, and Wear. J. Tribol. 2013, 135, 041603. [Google Scholar] [CrossRef]
- Hu, C.; Bai, M.; Lv, J.; Kou, Z.; Li, X. Molecular dynamics simulation on the tribology properties of two hard nanoparticles (diamond and silicon dioxide) confined by two iron blocks. Tribol. Int. 2015, 90, 297–305. [Google Scholar] [CrossRef]
- Sgroi, M.; Gili, F.; Mangherini, D.; Lahouij, I.; Dassenoy, F.; Garcia, I.; Odriozola, I.; Kraft, G. Friction reduction benefits in valve-train system using IF-MoS2 added engine oil. Tribol. Trans. 2015, 58, 207–214. [Google Scholar] [CrossRef]
- Gullac, B.; Akalin, O. Frictional Characteristics of IF-WS2 Nanoparticles in Simulated Engine Conditions. Tribol. Trans. 2010, 53, 939–947. [Google Scholar] [CrossRef]
- Tannous, J.; Dassenoy, F.; Lahouij, I.; Le Mogne, T.; Vacher, B.; Bruhács, A.; Tremel, W. Understanding the tribochemical mechanisms of IF-MoS2 nanoparticles under boundary lubrication. Tribol. Lett. 2011, 41, 55–64. [Google Scholar] [CrossRef]
- Alazemi, A.A.; Etacheri, V.; Dysart, A.D.; Stacke, L.-E.; Pol, V.G.; Sadeghi, F. Ultrasmooth Submicrometer Carbon Spheres as Lubricant Additives for Friction and Wear Reduction. ACS Appl. Mater. Interfaces 2015, 7, 5514–5521. [Google Scholar] [CrossRef]
- Alazemi, A.A.; Dysart, A.D.; Phuah, X.L.; Pol, V.G.; Sadeghi, F. MoS2 nanolayer coated carbon spheres as an oil additive for enhanced tribological performance. Carbon 2016, 110, 367–377. [Google Scholar] [CrossRef]
- Alazemi, A.A. Experimental Investigation of Friction Fundamentals at the Microscale. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2017. [Google Scholar]
- Rapoport, L.; Feldman, Y.; Homyonfer, M.; Cohen, H.; Sloan, J.; Hutchison, J.; Tenne, R. Inorganic fullerene-like material as additives to lubricants: Structure–function relationship. Wear 1999, 225–229, 975–982. [Google Scholar] [CrossRef]
- Rapoport, L.P.; Bilik, Y.; Feldman, Y.A.; Homyonfer, M.; Cohen, S.; Tenne, R. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 1997, 387, 791–793. [Google Scholar] [CrossRef]
- Teoh, Y.; How, H.; Sher, F.; Le, T.; Nguyen, H.; Yaqoob, H. Fuel Injection Responses and Particulate Emissions of a CRDI Engine Fueled with Cocos nucifera Biodiesel. Sustainability 2021, 13, 4930. [Google Scholar] [CrossRef]
- Habibullah, M.; Masjuki, H.; Kalam, A.; Zulkifli, N.; Masum, B.; Arslan, A.; Gulzar, M. Friction and wear characteristics of Calophyllum inophyllum biodiesel. Ind. Crop. Prod. 2015, 76, 188–197. [Google Scholar] [CrossRef]
- Yaqoob, H.; Teoh, Y.H.; Jamil, M.A.; Rasheed, T.; Sher, F. An Experimental Investigation on Tribological Behaviour of Tire-Derived Pyrolysis Oil Blended with Biodiesel Fuel. Sustainability 2020, 12, 9975. [Google Scholar] [CrossRef]
- Teoh, Y.H.; How, H.G.; Sher, F.; Le, T.D.; Ong, H.C.; Nguyen, H.T.; Yaqoob, H. Optimization of Fuel Injection Parameters of Moringa oleifera Biodiesel-Diesel Blend for Engine-Out-Responses Improvements. Symmetry 2021, 13, 982. [Google Scholar] [CrossRef]
- Mujtaba, M.A.; Cho, H.M.; Masjuki, H.H.; Kalam, M.A.; Farooq, M.; Soudagar, M.E.M.; Gul, M.; Ahmed, W.; Afzal, A.; Bashir, S.; et al. Effect of alcoholic and nano-particles additives on tribological properties of diesel–palm–sesame–biodiesel blends. Energy Rep. 2021, 7, 1162–1171. [Google Scholar] [CrossRef]
- Fayaz, H.; Mujtaba, M.; Soudagar, M.E.M.; Razzaq, L.; Nawaz, S.; Nawaz, M.A.; Farooq, M.; Afzal, A.; Ahmed, W.; Khan, T.Y.; et al. Collective effect of ternary nano fuel blends on the diesel engine performance and emissions characteristics. Fuel 2021, 293, 120420. [Google Scholar] [CrossRef]
- Nikolakopoulos, P.G.; Mavroudis, S.; Zavos, A. Lubrication performance of engine commercial oils with different performance levels: The effect of engine synthetic oil aging on piston ring tribology under real engine conditions. Lubricants 2018, 6, 90. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Bao, Q.; Li, K.; Khonsari, M.; Zhao, H. An investigation into the transient behavior of journal bearing with surface texture based on fluid-structure interaction approach. Tribol. Int. 2018, 118, 246–255. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, Y.; Zhou, J.; Zhu, W. Theoretical and experimental research on the micro interface lubrication regime of water lubricated bearing. Mech. Syst. Signal Process. 2021, 151, 107422. [Google Scholar] [CrossRef]
- Xie, Z.; Zhu, W. An investigation on the lubrication characteristics of floating ring bearing with consideration of multi-coupling factors. Mech. Syst. Signal Process. 2022, 162, 108086. [Google Scholar] [CrossRef]
- Lin, Q.; Wei, Z.; Wang, N.; Chen, W. Analysis on the lubrication performances of journal bearing system using computational fluid dynamics and fluid–structure interaction considering thermal influence and cavitation. Tribol. Int. 2013, 64, 8–15. [Google Scholar] [CrossRef]
- Zhang, H.; Hua, M.; Dong, G.-N.; Zhang, D.-Y.; Chin, K.-S. Boundary slip surface design for high speed water lubricated journal bearings. Tribol. Int. 2014, 79, 32–41. [Google Scholar] [CrossRef]
- Hu, C.; Bai, M.; Lv, J.; Wang, P.; Li, X. Molecular dynamics simulation on the friction properties of nanofluids confined by idealized surfaces. Tribol. Int. 2014, 78, 152–159. [Google Scholar] [CrossRef]
- Capozza, R.; Fasolino, A.; Ferrario, M.; Vanossi, A. Lubricated friction on nanopatterned surfaces via molecular dynamics simulations. Phys. Rev. B 2008, 77, 235432. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Ren, L.; Bai, Z. Friction performance and mechanisms of calcined products of Mg/Al layered double hydroxides as lubricant additives. Appl. Surf. Sci. 2019, 470, 979–990. [Google Scholar] [CrossRef]
- Alazemi, A.A.; Sadeghi, F.; Stacke, L.-E. Adhesion and Friction Force Measurements Using an Optical Micro-Apparatus. Tribol. Lett. 2016, 64, 49. [Google Scholar] [CrossRef]
- Pacquentin, W.; Caron, N.; Oltra, R. Effect of microstructure and chemical composition on localized corrosion resistance of a AISI 304L stainless steel after nanopulsed-laser surface melting. Appl. Surf. Sci. 2015, 356, 561–573. [Google Scholar] [CrossRef]
- Alazemi, A.A.; Ghosh, A.; Sadeghi, F.; Stacke, L.-E. Experimental Investigation of the Correlation between Adhesion and Friction Forces. Tribol. Lett. 2016, 62, 1–12. [Google Scholar] [CrossRef]
- Bhushan, B. Introduction to Tribology; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 199–266. [Google Scholar]
- Gupta, B.S. Friction in Textile Materials; Elsevier: Amsterdam, The Netherlands, 2008; pp. 37–66. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alazemi, A.A. Experimental Study of the Lubrication Mechanism of Micro-Spherical Solid Particles between Flat Surfaces. Lubricants 2021, 9, 81. https://doi.org/10.3390/lubricants9080081
Alazemi AA. Experimental Study of the Lubrication Mechanism of Micro-Spherical Solid Particles between Flat Surfaces. Lubricants. 2021; 9(8):81. https://doi.org/10.3390/lubricants9080081
Chicago/Turabian StyleAlazemi, Abdullah A. 2021. "Experimental Study of the Lubrication Mechanism of Micro-Spherical Solid Particles between Flat Surfaces" Lubricants 9, no. 8: 81. https://doi.org/10.3390/lubricants9080081
APA StyleAlazemi, A. A. (2021). Experimental Study of the Lubrication Mechanism of Micro-Spherical Solid Particles between Flat Surfaces. Lubricants, 9(8), 81. https://doi.org/10.3390/lubricants9080081