Current Knowledge of the Entomopathogenic Fungal Species Metarhizium flavoviride Sensu Lato and Its Potential in Sustainable Pest Control
Abstract
:1. Introduction
2. Literatures on the Genus Metarhizium
3. A Short Introduction to the Genus Metarhizium
4. Questions of Taxonomy and Identification Issues
5. The Species Spectrum of the Genus Metarhizium
6. A Short Literature Overview of the M. flavoviride Species Complex
7. Natural Occurrences and Natural Hosts of M. flavoviride
8. Effect of Conditions during Fermentation, Cultivation, Culture Regimes on the Performance of M. flavoviride
9. Effect of Formulation on the Performance of M. flavoviride
10. Laboratory Studies and Caged Field Trials Testing the Efficacy of M. flavoviride
11. Efficacy of M. flavoviride under Greenhouse and Open Field Conditions
12. Studies on the Compatibility of Management Types and Agricultural Substances on M. flavoviride
13. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mascarin, G.M.; Lopes, R.B.; Delalibera, Í.; Fernandes, É.K.K.; Luz, C.; Faria, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebr. Pathol. 2018, 165, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Razinger, J.; Schroers, H.J.; Urek, G. Virulence of Metarhizium brunneum to field collected Agriotes spp. wireworms. J. Agric. Sci. Technol. 2018, 20, 309–320. [Google Scholar]
- Eckard, S.; Ansari, M.A.; Bacher, S.; Butt, T.M.; Enkerli, J.; Grabenweger, G. Virulence of in vivo and in vitro produced conidia of Metarhizium brunneum strains for control of wireworms. Crop Prot. 2014, 64, 137–142. [Google Scholar] [CrossRef]
- Ansari, M.A.; Butt, T.M. Evaluation of entomopathogenic fungi and a nematode against the soil-dwelling stages of the crane fly Tipula paludosa. Pest Manag. Sci. 2012, 68, 1337–1344. [Google Scholar] [CrossRef]
- Kergunteuil, A.; Bakhtiari, M.; Formenti, L.; Xiao, Z.; Defossez, E.; Rasmann, S. Biological control beneath the feet: A review of crop protection against insect root herbivores. Insects 2016, 7, 70. [Google Scholar] [CrossRef]
- Herbst, M.; Razinger, J.; Ugrinović, K.; Škof, M.; Schroers, H.-J.; Hommes, M.; Poehling, H.-M. Evaluation of low risk methods for managing Delia radicum, cabbage root fly, in broccoli production. Crop Prot. 2017, 96, 273–280. [Google Scholar] [CrossRef]
- Fronza, E.; Specht, A.; Heinzen, H.; de Barros, N.M. Metarhizium (Nomuraea) rileyi as biological control agent. Biocontrol Sci. Technol. 2017, 27, 1243–1264. [Google Scholar] [CrossRef]
- Kim, J.C.; Lee, M.R.; Kim, S.; Lee, S.J.; Park, S.E.; Nai, Y.-S.; Lee, G.S.; Shin, T.Y.; Kim, J.S. Tenebrio molitor-mediated entomopathogenic fungal library construction for pest management. J. Asia Pac. Entomol. 2018, 21, 196–204. [Google Scholar] [CrossRef]
- Skinner, M.; Parker, B.L.; Kim, J.S. Role of entomopathogenic fungi in integrated pest management. In Integrated Pest Management; Abrol, D.P., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 169–191. ISBN 978-0-12-398529-3. [Google Scholar]
- Milner, R.J. Current status of Metarhizium as a mycoinsecticide in Australia. Biocontrol News Inf. 2000, 21, 47N–50N. [Google Scholar]
- Maina, U.M.; Galadima, I.B.; Gambo, F.M.; Zakaria, D. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J. Entomol. Zool. Stud. 2018, 6, 27–32. [Google Scholar]
- Kepler, R.M.; Humber, R.A.; Bischoff, J.F.; Rehner, S.A. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 2014, 106, 811–829. [Google Scholar] [CrossRef] [PubMed]
- Keyser, C.A.; Jensen, B.; Meyling, N.V. Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat. Pest Manag. Sci. 2016, 72, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Nishi, O.; Shimizu, S.; Sato, H. Metarhizium bibionidarum and M. purpureogenum: New species from Japan. Mycol. Prog. 2017, 16, 987–998. [Google Scholar] [CrossRef]
- African Journal of Agricultural Research. Available online: https://academicjournals.org/journal/AJAR (accessed on 16 July 2019).
- Fauna Europaea. Available online: https://fauna-eu.org/ (accessed on 16 July 2019).
- International Journal of Agriculture Innovations and Research. Available online: https://ijair.org/ (accessed on 16 July 2019).
- Journal of Entomology and Zoology Studies. Available online: http://www.entomoljournal.com/ (accessed on 16 July 2019).
- MycoBank Database. Available online: http://www.mycobank.org/ (accessed on 16 July 2019).
- PubMed—NCBI. Available online: https://www.ncbi.nlm.nih.gov/pubmed/ (accessed on 16 July 2019).
- ResearchGate. Available online: https://www.researchgate.net/ (accessed on 16 July 2019).
- ScienceDirect. Available online: https://www.sciencedirect.com/ (accessed on 16 July 2019).
- Scientific Electronic Library Online. Available online: https://scielo.org/ (accessed on 16 July 2019).
- Springer. Available online: https://link.springer.com/ (accessed on 16 July 2019).
- Rehner, S.A.; Kepler, R.M. Species limits, phylogeography and reproductive mode in the Metarhizium anisopliae complex. J. Invertebr. Pathol. 2017, 148, 60–66. [Google Scholar] [CrossRef]
- Bidochka, M.J.; Small, C.L. Phylogeography of Metarhizium, an insect pathogenic fungus. In Insect–Fungal Associations: Ecology and Evolution; Oxford University Press: Oxford, UK, 2005; pp. 3–27. [Google Scholar]
- Bischoff, J.F.; Rehner, S.A.; Humber, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 2009, 101, 512–530. [Google Scholar] [CrossRef]
- Brancini, G.T.P.; Tonani, L.; Rangel, D.E.N.; Roberts, D.W.; Braga, G.U.L. Species of the Metarhizium anisopliae complex with diverse ecological niches display different susceptibilities to antifungal agents. Fungal Biol. 2018, 122, 563–569. [Google Scholar] [CrossRef]
- Driver, F.; Milner, R.J.; Trueman, J.W.H. A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycol. Res. 2000, 104, 134–150. [Google Scholar] [CrossRef]
- Oliveira, I.V. Entomopathogenic Fungi Associated to Prays oleae: Isolation, Characterization and Selection for Biological Control. Ph.D. Thesis, Universidade do Minho, Braga, Portugal, 2013. [Google Scholar]
- Kuznetsov, V.D. The population concept in microbiology. Actinomycetes 1990, 1, 63–66. [Google Scholar]
- Lomer, C.J.; Bateman, R.P.; Johnson, D.L.; Langewald, J.; Thomas, M. Biological control of locusts and grasshoppers. Annu. Rev. Entomol. 2001, 46, 667–702. [Google Scholar] [CrossRef]
- Bridge, P.D.; Williams, M.A.J.; Prior, C.; Paterson, R.R.M. Morphological, biochemical and molecular characteristics of Metarhizium anisopliae and M. flavoviride. Microbiology 1993, 139, 1163–1169. [Google Scholar] [CrossRef]
- Welling, M.; Nachtigall, G.; Zimmermann, G. Metarhizium spp. isolates from madagascar: Morphology and effect of high temperature on growth and infectivity to the migratory locust, Locusta migratoria. Entomophaga 1994, 39, 351–361. [Google Scholar] [CrossRef]
- Fernandes, É.K.K.; Keyser, C.A.; Chong, J.P.; Rangel, D.E.N.; Miller, M.P.; Roberts, D.W. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. J. Appl. Microbiol. 2010, 108, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Milner, R.J. Metarhizium flavoviride (FI985) as a promising mycoinsecticide for Australian acridids. Mem. Entomol. Soc. Can. 1997, 129, 287–300. [Google Scholar] [CrossRef]
- Danfa, A.; van der Valk, H.C.H.G. Laboratory testing of Metarhizium spp. and Beauveria bassiana on Sahelian non-target arthropods. Biocontrol Sci. Technol. 1999, 9, 187–198. [Google Scholar] [CrossRef]
- van der Valk, H. Review of the Efficacy of Metarhizium anisopliae var. acridum against the Desert Locust; Desert Locust Technical Series AGP. DL/TS/34; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 879–920. [Google Scholar] [CrossRef]
- Bischoff, J.F.; Rehner, S.A.; Humber, R.A. Metarhizium frigidum sp. nov.: A cryptic species of M. anisopliae and a member of the M. flavoviride complex. Mycologia 2006, 98, 737–745. [Google Scholar] [CrossRef]
- Pante, E.; Puillandre, N.; Viricel, A.; Arnaud-Haond, S.; Aurelle, D.; Castelin, M.; Chenuil, A.; Destombe, C.; Forcioli, D.; Valero, M.; et al. Species are hypotheses: Avoid connectivity assessments based on pillars of sand. Mol. Ecol. 2015, 24, 525–544. [Google Scholar] [CrossRef]
- Greuter, W.; Hawksworth, D.L.; McNeill, J.; Mayo, M.A.; Minelli, A.; Sneath, P.H.A.; Tindall, B.J.; Trehane, P.; Tubbs, P. Draft BioCode (1997): The prospective international rules for the scientific names of organisms. Taxon 1998, 47, 127–150. [Google Scholar]
- Schmelz, R.M.; Rüdiger, M.; Beylich, A.; Boros, G.; Dózsa-Farkas, K.; Graefe, U. How to deal with cryptic species in Enchytraeidae, with recommendations on taxonomical descriptions. Opusc. Zool. Bp. 2017, 48, 45–51. [Google Scholar] [CrossRef]
- Hernández-Domínguez, C.; de Cerroblanco-Baxcajay, M.L.; Alvarado-Aragón, L.U.; Hernández-López, G.; Guzmán-Franco, A.W. Comparison of the relative efficacy of an insect baiting method and selective media for diversity studies of Metarhizium species in the soil. Biocontrol Sci. Technol. 2016, 26, 707–717. [Google Scholar] [CrossRef]
- Lopes, R.B.; Souza, D.A.; Rocha, L.F.N.; Montalva, C.; Luz, C.; Humber, R.A.; Faria, M. Metarhizium alvesii sp. nov.: A new member of the Metarhizium anisopliae species complex. J. Invertebr. Pathol. 2018, 151, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Tulloch, M. The genus Metarhizium. Trans. Br. Mycol. Soc. 1976, 66, 407–411. [Google Scholar] [CrossRef]
- Montalva, C.; Collier, K.; Rocha, L.F.N.; Inglis, P.W.; Lopes, R.B.; Luz, C.; Humber, R.A. A natural fungal infection of a sylvatic cockroach with Metarhizium blattodeae sp. nov., a member of the M. flavoviride species complex. Fungal Biol. 2016, 120, 655–665. [Google Scholar] [CrossRef]
- Chen, W.H.; Han, Y.F.; Liang, J.D.; Liang, Z.Q.; Jin, D.C. Metarhizium dendrolimatilis, a novel Metarhizium species parasitic on Dendrolimus sp larvae. Mycosphere 2017, 8, 31–37. [Google Scholar] [CrossRef]
- Gams, W.; Rozsypal, J. Metarrhizium flavoviride n.sp. isolated from insects and from soil. Acta Bot. Neerl. 1973, 22, 518–521. [Google Scholar] [CrossRef]
- Lomer, C.J.; Bateman, R.P.; Godonou, I.; Kpindou, D.; Shah, P.A.; Paraiso, A.; Prior, C. Field infection of Zonocerus variegatus following application of an oil-based formulation of Metarhizium flavoviride conidia. Biocontrol Sci. Technol. 1993, 3, 337–346. [Google Scholar] [CrossRef]
- Lomer, C.J.; Prior, C.; Kooyman, C. Development of Metarhizium ssp. for the control of grasshoppers and locusts. Mem. Entomol. Soc. Can. 1997, 129, 265–286. [Google Scholar] [CrossRef]
- Velazquez, V.M.H.; Padilla, A.M.B.; Gonzalez, E.G. Detection of Metarhizium flavoviride on Schistocerca piceifrons piceifrons (Orthoptera: Acrididae) in Socorro Island, Archipielago of Revillagigedo, Mexico. VEDALIA 1997, 4, 45–46. [Google Scholar]
- Mietkiewski, R.T.; Pell, J.K.; Clark, S.J. Influence of pesticide use on the natural occurrence of entomopathogenic fungi in arable soils in the UK: Field and laboratory comparisons. Biocontrol Sci. Technol. 1997, 7, 565–576. [Google Scholar] [CrossRef]
- Shah, P.A.; Gbongboui, C.; Godonou, I.; Hossou, A.; Lomer, C.J. Natural incidence of Metarhizium flavoviride infection in two grasshopper communities in northern Benin. Biocontrol Sci. Technol. 1998, 8, 335–344. [Google Scholar] [CrossRef]
- Pokorný, R.; Olejníková, P.; Balog, M.; Zifčák, P.; Hölker, U.; Janssen, M.; Bend, J.; Höfer, M.; Holienčin, R.; Hudecová, D.; et al. Characterization of microorganisms isolated from lignite excavated from the Záhorie coal mine (southwestern Slovakia). Res. Microbiol. 2005, 156, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Meyling, N.V.; Eilenberg, J. Occurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agric. Ecosyst. Environ. 2006, 113, 336–341. [Google Scholar] [CrossRef]
- Belen, J.M.; Ocampo, V.R.; Caoili, B.L. Pathogenicity and biological characterization of entomopathogenic fungi isolated from corn earworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Philipp. Entomol. 2011, 25, 48–63. [Google Scholar]
- Zimmermann, G. The ‘Galleria bait method’ for detection of entomopathogenic fungi in soil. J. Appl. Entomol. 1986, 102, 213–215. [Google Scholar] [CrossRef]
- Fisher, J.J.; Rehner, S.A.; Bruck, D.J. Diversity of rhizosphere associated entomopathogenic fungi of perennial herbs, shrubs and coniferous trees. J. Invertebr. Pathol. 2011, 106, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Shin, T.Y.; Lee, W.W.; Ko, S.H.; Choi, J.B.; Bae, S.M.; Choi, J.Y.; Lee, K.S.; Je, Y.H.; Jin, B.R.; Woo, S.D. Distribution and characterisation of entomopathogenic fungi from Korean soils. Biocontrol Sci. Technol. 2013, 23, 288–304. [Google Scholar] [CrossRef]
- Steinwender, B.M.; Enkerli, J.; Widmer, F.; Eilenberg, J.; Thorup-Kristensen, K.; Meyling, N.V. Molecular diversity of the entomopathogenic fungal Metarhizium community within an agroecosystem. J. Invertebr. Pathol. 2014, 123, 6–12. [Google Scholar] [CrossRef]
- Kocaçevik, S.; Sönmez, E.; Demirbağ, Z.; Demir, I. Isolation, characterization and virulence of highly promising entomopathogenic fungi from Amphimallon solstitiale (Coleoptera: Scarabaeidae). In Proceedings of the Fifth International Entomopathogens and Microbial Control Congress, Ankara, Turkey, 9–11 September 2015. [Google Scholar]
- Piazza, S.D.; Isaia, M.; Vizzini, A.; Badino, G.; Voyron, S.; Zotti, M. First mycological assessment in hydrothermal caves of Monte Kronio (Sicily, southern Italy). Webbia 2017, 72, 277–285. [Google Scholar] [CrossRef]
- Steinwender, B.M.; Enkerli, J.; Widmer, F.; Eilenberg, J.; Kristensen, H.L.; Bidochka, M.J.; Meyling, N.V. Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity. J. Invertebr. Pathol. 2015, 132, 142–148. [Google Scholar] [CrossRef]
- Jenkins, N.E.; Prior, C. Growth and formation of true conidia by Metarhizium flavoviride in a simple liquid medium. Mycol. Res. 1993, 97, 1489–1494. [Google Scholar] [CrossRef]
- McClatchie, G.V.; Moore, D.; Bateman, R.P.; Prior, C. Effects of temperature on the viability of the conidia of Metarhizium flavoviride in oil formulations. Mycol. Res. 1994, 98, 749–756. [Google Scholar]
- Moore, D.; Douro-Kpindou, O.-K.; Jenkins, N.E.; Lomer, C.J. Effects of moisture content and temperature on storage of Metarhizium flavoviride conidia. Biocontrol Sci. Technol. 1996, 6, 51–62. [Google Scholar] [CrossRef]
- Barnes, S.E.; Moore, D. The effect of fatty, organic or phenolic acids on the germination of conidia of Metarhizium flavoviride. Mycol. Res. 1997, 101, 662–666. [Google Scholar] [CrossRef]
- Moore, D.; Higgins, P.M. Viability of stored conidia of Metarhizium flavoviride Gams and Rozsypal, produced under differing culture regimes and stored with clays. Biocontrol Sci. Technol. 1997, 7, 335–344. [Google Scholar] [CrossRef]
- Fargues, J.; Smits, N.; Vidal, C.; Vey, A.; Vega, F.; Mercadier, G.; Quimby, P. Effect of liquid culture media on morphology, growth, propagule production, and pathogenic activity of the Hyphomycete, Metarhizium flavoviride. Mycopathologia 2002, 154, 127–138. [Google Scholar] [CrossRef]
- Issaly, N.; Chauveau, H.; Aglevor, F.; Fargues, J.; Durand, A. Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochem. 2005, 40, 1425–1431. [Google Scholar] [CrossRef]
- Roberts, D.W.; St Leger, R.J. Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. In Advances in Applied Microbiology; Laskin, A.I., Bennett, J.W., Gadd, G., Eds.; Elsevier Inc.: London, UK, 2004; pp. 1–70. [Google Scholar]
- Moore, D.; Bridge, P.D.; Higgins, P.M.; Bateman, R.P.; Prior, C. Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Ann. Appl. Biol. 1993, 122, 605–616. [Google Scholar] [CrossRef]
- Bateman, R.P.; Carey, M.; Moore, D.; Prior, C. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann. Appl. Biol. 1993, 122, 145–152. [Google Scholar] [CrossRef]
- Ball, B.V.; Pye, B.J.; Carreck, N.L.; Moore, D.; Bateman, R.P. Laboratory testing of a mycopesticide on non-target organisms: The effects of an oil formulation of Metarhizium flavoviride applied to Apis mellifera. Biocontrol Sci. Technol. 1994, 4, 289–296. [Google Scholar] [CrossRef]
- Hunt, T.R.; Moore, D.; Higgins, P.M.; Prior, C. Effect of sunscreens, irradiance and resting periods on the germination of Metarhizium flavoviride conidia. Entomophaga 1994, 39, 313–322. [Google Scholar] [CrossRef]
- Sabbour, M.M. The toxicity effect of nano fungi Isaria fumosorosea and Metarhizium flavoviride against the potato tuber moth, Phthorimaea operculella (Zeller). Am. J. Biol. Life Sci. 2015, 3, 155–160. [Google Scholar]
- Sabbour, M.M.; Singer, S.M. Efficacy of nano Isaria fumosorosea and Metarhizium flavoviride against corn pests under laboratory and field conditions in Egypt. Int. J. Sci. Res. ISSN 2015, 4, 2319–7064. [Google Scholar]
- Aguda, R.M.; Rombach, M.C.; Im, D.J.; Shepard, B.M. Suppression of populations of the brown planthopper, Nilaparvata lugens (StÅl) (Hom.; Delphacidae) in field cages by entomogenous fungi (Deuteromycotina) on rice in Korea. J. Appl. Entomol. 1987, 104, 167–172. [Google Scholar] [CrossRef]
- Moore, D.; Reed, M.; le Patourel, G.; Abraham, Y.J.; Prior, C. Reduction of feeding by the desert locust, Schistocerca gregaria, after infection with Metarhizium flavoviride. J. Invertebr. Pathol. 1992, 60, 304–307. [Google Scholar] [CrossRef]
- Moorhouse, E.R.; Gillespie, A.T.; Charnley, A.K. Laboratory selection of Metarhizium spp. isolates for control of vine weevil larvae (Otiorhynchus sulcatus). J. Invertebr. Pathol. 1993, 62, 15–21. [Google Scholar] [CrossRef]
- Milner, R.J.; Prior, C. Susceptibility of the Australian plague locust, Chortoicetes terminifera, and the wingless grasshopper, Phaulacridium vittatum, to the fungi Metarhizium spp. Biol. Control 1994, 4, 132–137. [Google Scholar] [CrossRef]
- Seyoum, E.; Moore, D.; Charnley, A.K. Reduction in flight activity and food consumption by the desert locust, Schistocerca gregaria Forskål (Orth., Cyrtacanthacrinae), after infection with Metarhizium flavoviride. J. Appl. Entomol. 1994, 118, 310–315. [Google Scholar] [CrossRef]
- Prior, C.; Carey, M.; Abraham, Y.J.; Moore, D.; Bateman, R.P. Development of a bioassay method for the selection of entomopathogenic fungi virulent to the desert locust, Schistocerca gregaria (Forskål). J. Appl. Entomol. 1995, 119, 567–573. [Google Scholar] [CrossRef]
- Caudwell, R.W.; Gatehouse, A.G. Laboratory and field trials of bait formulations of the fungal pathogen, Metarhizium flavoviride, against a tropical grasshopper and locust. Biocontrol Sci. Technol. 1996, 6, 561–568. [Google Scholar] [CrossRef]
- Moore, D.; Bateman, R.P.; Carey, M.; Prior, C. Long-term storage of Metarhizium flavoviride conidia in oil formulations for the control of locusts and grasshoppers. Biocontrol Sci. Technol. 1995, 5, 193–200. [Google Scholar] [CrossRef]
- Milner, R.J.; Staples, J.A.; Prior, C. Laboratory susceptibility of Locusta migratoria (L.), Austracrisguttulosa (Walker) and Valanga irregularis (Walker) (Orthoptera: Acrididae) to an oil formulation of Metarhizium flavoviride Gams and Rozsypal (Deuteromycotina: Hyphomycetes). Aust. J. Entomol. 1996, 35, 355–360. [Google Scholar] [CrossRef]
- Fargues, J.; Ouedraogo, A.; Goettel, M.S.; Lomer, C.J. Effects of temperature, humidity and inoculation method on susceptibility of Schistocerca gregaria to Metarhizium flavoviride. Biocontrol Sci. Technol. 1997, 7, 345–356. [Google Scholar] [CrossRef]
- Peveling, R.; Demba, S.A. Virulence of the entomopathogenic fungus Metarhizium flavoviride Gams and Rozsypal and toxicity of diflubenzuron, fenitrothion-esfenvalerate and profenofos-cypermethrin to nontarget arthropods in Mauritania. Arch. Environ. Contam. Toxicol. 1997, 32, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Rangel, D.E.N.; Braga, G.U.L.; Fernandes, É.K.K.; Keyser, C.A.; Hallsworth, J.E.; Roberts, D.W. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr. Genet. 2015, 61, 383–404. [Google Scholar] [CrossRef] [PubMed]
- Langewald, J.; Kooyman, C.; Douro-Kpindou, O.; Lomer, C.J.; Dahmoud, A.O.; Mohamed, H.O. Field treatment of desert locust (Schistocerca gregaria Forskal) hoppers in Mauritania using an oil formulation of the entomopathogenic fungus Metarhizium flavoviride. Biocontrol Sci. Technol. 1997, 7, 603–612. [Google Scholar] [CrossRef]
- Damin, S.; Vilani, A.; de Freitas, D.; Krasburg, C.; de Queiroz, J.A.; Kagimura, F.Y.; Onofre, S.B. Ação de fungicidas sobre o crescimento do fungo entomopatogênico Metarhizium sp. Rev. Acad. Ciênc. Anim. 2011, 9, 41–49. [Google Scholar] [CrossRef]
- Sammaritano, J.A.A.; Lastra, C.C.L.; Leclerque, A.; Vazquez, F.; Toro, M.E.; D’Alessandro, C.P.; Cuthbertson, A.G.S.; Lechner, B.E. Control of Bemisia tabaci by entomopathogenic fungi isolated from arid soils in Argentina. Biocontrol Sci. Technol. 2016, 26, 1668–1682. [Google Scholar] [CrossRef]
- Jarmuł-Pietraszczyk, J.; Kamionek, M.; Wilkowski, P. Effect of long fertilisation on seasonal variability of occurrence of entomopathogenic nematodes and fungi. Ecol. Chem. Eng. A 2011, 18, 359–363. [Google Scholar]
- Meyling, N.V.; Thorup-Kristensen, K.; Eilenberg, J. Below-and aboveground abundance and distribution of fungal entomopathogens in experimental conventional and organic cropping systems. Biol. Control 2011, 59, 180–186. [Google Scholar] [CrossRef]
- Hong, T.D.; Jenkins, N.E.; Ellis, R.H. The effects of duration of development and drying regime on the longevity of conidia of Metarhizium flavoviride. Mycol. Res. 2000, 104, 662–665. [Google Scholar] [CrossRef]
- Onofre, S.B.; Miniuk, C.M.; de Barros, N.M.; Azevedo, J.L. Growth and sporulation of Metarhizium flavoviride var. flavoviride on culture media and lighting regimes. Sci. Agric. 2001, 58, 613–616. [Google Scholar] [CrossRef]
- Stathers, T.E.; Moore, D.; Prior, C. The effect of different temperatures on the viability of Metarhizium flavoviride conidia stored in vegetable and mineral oils. J. Invertebr. Pathol. 1993, 62, 111–115. [Google Scholar] [CrossRef]
- Morley-Davies, J.; Moore, D.; Prior, C. Screening of Metarhizium and Beauveria spp. conidia with exposure to simulated sunlight and a range of temperatures. Mycol. Res. 1996, 100, 31–38. [Google Scholar] [CrossRef]
- Shah, P.A.; Douro-Kpindou, O.K.; Sidibe, A.; Daffe, C.O.; van der Pauuw, H.; Lomer, C.J. Effects of the sunscreen oxybenzone on field efficacy and persistence of Metarhizium flavoviride conidia against Kraussella amabile (Orthoptera: Acrididae) in Mali, West Africa. Biocontrol Sci. Technol. 1998, 8, 357–364. [Google Scholar] [CrossRef]
- Fernandes, É.K.K.; Rangel, D.E.N.; Braga, G.U.L.; Roberts, D.W. Tolerance of entomopathogenic fungi to ultraviolet radiation: A review on screening of strains and their formulation. Curr. Genet. 2015, 61, 427–440. [Google Scholar] [CrossRef]
- Soares, G.G.; Marchal, M.; Ferron, P. Susceptibility of Otiorhynchus sulcatus (Coleoptera: Curculionidae) larvae to Metarhizium anisopliae and Metarhizium flavoviride (Deuteromycotina: Hyphomycetes) at two different temperatures. Environ. Entomol. 1983, 12, 1887–1891. [Google Scholar] [CrossRef]
- Price, R.E.; Bateman, R.P.; Brown, H.D.; Butler, E.T.; Müller, E.J. Aerial spray trials against brown locust (Locustana pardalina, Walker) nymphs in South Africa using oil-based formulations of Metarhizium flavoviride. Crop Prot. 1997, 16, 345–351. [Google Scholar] [CrossRef]
- Inglis, G.D.; Johnson, D.L.; Cheng, K.-J.; Goettel, M.S. Use of pathogen combinations to overcome the constraints of temperature on entomopathogenic Hyphomycetes against grasshoppers. Biol. Control 1997, 8, 143–152. [Google Scholar] [CrossRef]
- Thomas, M.B.; Jenkins, N.E. Effects of temperature on growth of Metarhizium flavoviride and virulence to the variegated grasshopper, Zonocerus variegatus. Mycol. Res. 1997, 101, 1469–1474. [Google Scholar] [CrossRef]
- Thomas, M.B.; Blanford, S.; Lomer, C.J. Reduction of feeding by the variegated grasshopper, Zonocerus variegatus, following infection by the fungal pathogen, Metarhizium flavoviride. Biocontrol Sci. Technol. 1997, 7, 327–334. [Google Scholar] [CrossRef]
- Moore, D.; Langewald, J.; Obognon, F. Effects of rehydration on the conidial viability of Metarhizium flavoviride mycopesticide formulations. Biocontrol Sci. Technol. 1997, 7, 87–94. [Google Scholar] [CrossRef]
- Sieglaff, D.H.; Pereira, R.M.; Capinera, J.L. Microbial control of Schistocerca americana (Orthoptera: Acrididae) by Metarhizium flavoviride (Deuteromycotina): Instar dependent mortality and efficacy of ultra low volume application under greenhouse conditions. J. Econ. Entomol. 1998, 91, 76–85. [Google Scholar] [CrossRef]
- Inglis, G.D.; Duke, G.M.; Kawchuk, L.M.; Goettel, M.S. Influence of oscillating temperatures on the competitive infection and colonization of the migratory grasshopper by Beauveria bassiana and Metarhizium flavoviride. Biol. Control 1999, 14, 111–120. [Google Scholar] [CrossRef]
- Jin, S.-F.; Feng, M.-G.; Chen, J.-Q. Selection of global Metarhizium isolates for the control of the rice pest Nilaparvata lugens (Homoptera: Delphacidae). Pest Manag. Sci. 2008, 64, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.F.N.; Luz, C. Activity of Metarhizium spp. and Isaria spp. from the Central Brazilian Cerrado against Triatoma infestans nymphs. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lin, H.; Li, S.; Chen, P.; Jin, L.; Yang, J. Virulence of entomopathogenic fungi to adults and eggs of Nilaparvata lugens Stal (Homopera: Delphacidae). Afr. J. Agric. Res. 2012, 7, 2183–2190. [Google Scholar]
- Gorashi, N.E.; Elhassan, S.M.; Bashir, M.O. The effect of Metarhizium flavoviride and phenylacetonitrile on food consumption and the daily behavior of the gregarious nymphs of Schistocerca gregaria. Int. J. Agric. Innov. Res. 2014, 2, 919–922. [Google Scholar]
- Lee, W.W.; Shin, T.Y.; Bae, S.M.; Woo, S.D. Screening and evaluation of entomopathogenic fungi against the green peach aphid, Myzus persicae, using multiple tools. J. Asia Pac. Entomol. 2015, 18, 607–615. [Google Scholar] [CrossRef]
- Huanhuan, Z.; Yang, C.; Pinjun, W.; Weixia, W.; Fengxiang, L.; Qiang, F. Influence of symbiotic bacteria arsenophonus, rice variety and temperature on the incidence rate of Nilaparvata lugens to Metarhizium flavoviride. Chin. J. Rice Sci. 2017, 31, 643–651. [Google Scholar]
- Kryukov, V.; Yaroslavtseva, O.; Tyurin, M.; Akhanaev, Y.; Elisaphenko, E.; Wen, T.-C.; Tomilova, O.; Tokarev, Y.; Glupov, V. Ecological preferences of Metarhizium spp. from Russia and neighboring territories and their activity against Colorado potato beetle larvae. J. Invertebr. Pathol. 2017, 149, 1–7. [Google Scholar] [CrossRef]
- Dogan, Y.O.; Hazir, S.; Yildiz, A.; Butt, T.M.; Cakmak, I. Evaluation of entomopathogenic fungi for the control of Tetranychus urticae (Acari: Tetranychidae) and the effect of Metarhizium brunneum on the predatory mites (Acari: Phytoseiidae). Biol. Control 2017, 111, 6–12. [Google Scholar] [CrossRef]
- Douro-Kpindou, O.-K.; Godonou, I.; Houssou, A.; Lomer, C.J.; Shah, P.A. Control of Zonocerus variegatus by ultra-low volume application of an oil formulation of Metarhizium flavoviride conidia. Biocontrol Sci. Technol. 1995, 5, 131–139. [Google Scholar] [CrossRef]
- de Castro, T.R. Abundance, Genetic Diversity and Persistence of Metarhizium spp. Fungi from Soil of Strawberry Crops and Their Potential as Biological Control Agents against the Two-Spotted Spider Mite Tetranychus urticae. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, 2016. [Google Scholar]
- Smits, J.E.; Johnson, D.L.; Lomer, C. Pathological and physiological responses of ring-necked pheasant chicks following dietary exposure to the fungus Metarhizium flavoviride, a biocontrol agent for locusts in africa. J. Wildl. Dis. 1999, 35, 194–203. [Google Scholar] [CrossRef] [PubMed]
Name of Species | Former Name | MFSC |
---|---|---|
Metarhizium acridum (Driver and Milner) J.F. Bisch., Rehner and Humber stat. nov. [25,27] | Metarhizium anisopliae var. acridum Driver and Milner [29] | |
Metarhizium album [29] | ||
Metarhizium alvesii Lopes, Faria, Montalva and Humber sp. nov. [45] | ||
Metarhizium anisopliae (Metschn.) Sorokīn [12,25,27] | ||
Metarhizium anisopliae var. anisopliae [29] | ||
Metarhizium anisopliae var. majus [29] syn. Metarhizium anisopliae var. major (J.R. Johnst.) M.C. Tulloch [46] | ||
Metarhizium atrovirens (Kobayasi and Shimizu) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium bibionidarum O. Nishi, H. Sato, sp. nov. [14] x | X | |
Metarhizium blattodeae Montalva, Humber, Collier and Luz, sp. nov. [47] x | X | |
Metarhizium brasiliense Kepler, S.A. Rehner and Humber, sp. nov. [12] | Metarhizium flavoviride Type E [29] x | |
Metarhizium brittlebankisoides (Zuo Y. Liu, Z.Q. Liang, Whalley, Y.J. Yao and A.Y. Liu) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium brunneum Petch [25,27] | ||
Metarhizium campsosterni (W.M. Zhang and T.H. Li) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium carneum (Duché and R. Heim) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium cylindrosporum Q.T. Chen and H.L. Guo [12] | ||
Metarhizium dendrolimatilis Z.Q. Liang, W.H. Chen, Y.F. Han and D.C. Jin, sp. nov. [48] | ||
M. flavoviride (Gams and Rozsypal) [25] x | X | |
Metarhizium flavoviride var. flavoviride [29] x | X | |
Metarhizium frigidum J. Bisch. et S. A. Rehner, sp. nov. [40] x | X | |
Metarhizium globosum J.F. Bisch., Rehner and Humber sp. nov. [25,27] | ||
Metarhizium granulomatis (Sigler) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium guizhouense Q.T. Chen and H.L. Guo, anamorph of M. taii [25,27] | Metarhizium taii Z.Q. Liang and A. Y. Liu | |
Metarhizium guniujiangense (C.R. Li, B. Huang, M.Z. Fan and Z.Z. Li) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium indigoticum (Kobayasi and Shimizu) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium khaoyaiense (Hywel-Jones) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium koreanum Kepler, S.A. Rehner and Humber, sp. nov. [12] x | X | |
Metarhizium kusanagiense (Kobayasi and Shimizu) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium lepidiotae [27] (Driver and Milner) J.F. Bisch., Rehner and Humber stat. nov. [25,27] | Metarhizium anisopliae var. lepidiotae Driver and Milner (as Metarhizium anisopliae var. lepidiotum) [29] | |
Metarhizium majus (J.R. Johnst.) J.F. Bisch., Rehner and Humber stat. nov. [25,27] | Metarhizium anisopliae var. major (J.R. Johnst.) M.C. Tulloch [46] | |
Metarhizium marquandii (Massee) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium martiale (Speg.) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium minus (Rombach, Humber and D.W. Roberts) Kepler, S.A. Rehner and Humber, comb. et stat. nov. [12] x | Metarhizium flavoviride var. minus Rombach, Humber and D.W. Roberts [29] x | X |
Metarhizium novozealandicum Kepler, S.A. Rehner and Humber, comb. et stat. nov. [12] | Metarhizium flavoviride var. novozealandicum Driver and R.J. Milner [29] | |
Metarhizium owariense (Kobayasi) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium owariense f. viridescens (Uchiy. and Udagawa) Kepler, S.A. Rehner and Humber, comb. nov [12] | ||
Metarhizium pemphigi (Driver and R.J. Milner) Kepler, S.A. Rehner and Humber, comb. et stat. nov. [12] x | Metarhizium flavoviride var. pemphigi Driver and R.J. Milner [29] x | X |
Metarhizium pingshaense Q.T. Chen and H.L. Guo [25,27] | ||
Metarhizium purpureogenum O. Nishi, S. Shimizu, H. Sato, sp. nov. [14] x | X | |
Metarhizium pseudoatrovirens (Kobayasi and Shimizu) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium rileyi (Farl.) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium robertsii J.F. Bisch., Rehner and Humber sp. nov. [25,27] | ||
Metarhizium taii Z.Q. Liang and A.Y. Liu [12] | ||
Metarhizium yongmunense (G.H. Sung, J.M. Sung and Spatafora) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium viride (Segretain, Fromentin, Destombes, Brygoo and Dodin ex Samson) Kepler, S.A. Rehner and Humber, comb. nov. [12] | ||
Metarhizium viridulum (Tzean, L.S. Hsieh, J.L. Chen and W.J. Wu) B. Huang and Z.Z. Li [12] |
Effect of Fermentation on the Performance of Metarhizium flavoviride | ||||||
Year | Culture Variable | Other Conditions | Measured Outcome | References | Observations | |
1993 | Medium content | na. | Conidial production | Jenkins and Prior 1993 [65] | First record of M. flavoviride in submerged culture | |
1993 | Medium content | Conidial concentration | Mortality of targets and secondary sporulation | Lomer et al., 1993 [50] | ||
1994 | Medium content, incubation temperature | Length of storage, high temperature after storage | Germination rate | McClatchie et al., 1994 [66] | ||
1996 | Age of culture | Stored as powder or oil-formation, silica gel | Viability, moisture content | Moore et al., 1996 [67] | ||
1997 | Addition of fatty acids of various chain lengths | Acids added, time, previous storage; inhibitor and promoter | Germination percentage | Barnes and Moore 1997 [68] | ||
1997 | C:N ratio, age of culture (time passed after inoculation) | Air-drying, temperature and method (dry powder or in oil) | Conidial viability (germination) | Moore and Higgins 1997 [69] | ||
2000 | Length of incubation after inoculation | Speed of drying | Germination rate | Hong et al. 2000 [96] | ||
2001 | Growing media | Lighting regime | Diameter of colonies, number of conidia | Onofre et al. 2001 [97] | ||
2001 | Growing media | na. | Conidial production, morphological features, fungal pathogenicity | Fargues et al. 2002 [70] | ||
2005 | N sources in the medium; C:N ratio; amount of oxygen | pH regulation | Conidial growth, production of conidia and blastospores | Issaly et al. 2005 [71] | First record of culture parameters on blastospores in submerged culture | |
Effect of formulation on the performance of Metarhizium flavoviride | ||||||
Experimental condition or variable | Type of formulation | Reference | Note | |||
1993 | Wavelength of solar radiation, age of cultures, oils added, sunscreens | Sunscreen compounds dissolved in oils | Moore et al., 1993 [73] | Simulated UV-exposure in a laboratory | ||
1993 | Formulation, relative humidity, conidial concentrations | Oil- or water-based formulation | Bateman et al., 1993 [74] | Efficacy against target organism was tested | ||
1993 | Length and temperature of storage, oils, drying | Oils of mineral, vegetable and animal origin, molasses | Stathers et al., 1993 [98] | A storage experiment | ||
1994 | Formulation type | Oil-based and water-based formulations | Ball et al., 1994 [75] | Formulation types and dosages on targets and non-targets | ||
1994 | Length of sunlight, time | Sunscreens | Hunt et al., 1994 [76] | |||
1994 | Oil type, silica gel, temperature, time | Vegetable oils mixed with mineral oils | McClatchie et al., 1994 [66] | |||
1995 | Storage time and temperature, addition of antioxidants, silica gel | Vegetable or mineral oils | Moore et al., 1995 [86] | Efficacy against target organism | ||
1995 | Oil type and degree of refinement, time | Vegetable and mineral oils | Prior et al., 1995 [84] | Stand-alone toxicity of oils that are optional in formulations | ||
1996 | Oils, silica gel; storage with or without formulation; storage time and temperature | Addition of oils to conidia | Moore et al., 1996 [67] | |||
1996 | Type and freshness of bait | Ingredients within bait | Caudwell and Gatehouse 1996 [85] | |||
1996 | Formulation type, temperatures, incubation temperature, storage time | Oil and dry formulation, silica gel | Morley-Davies et al., 1996 [99] | |||
1997 | Clay types, storage temperature, an oil mix | Minerals to conidial suspension, a mineral oil-mixture | Moore and Higgins 1997 [69] | |||
1997 | Types of clay, storage temperature, addition of an oil mix | Minerals to conidial suspension, a mineral oil-mixture | Moore and Higgins 1997 [69] | Types of clays, surface areas | ||
1997 | Temperature, inoculation method, spore carrier, relative humidity | Oil suspensions and aqueous suspension | Ouedraogo et al., 1997 [88] | Efficacy against target organisms. Carrier type and inoculation method | ||
1998 | Sunscreen oil, time after treatment, time of application | Oil suspensions | Shah et al., 1998 [100] | Caged field trial. Efficacy against target organisms | ||
2015 | Nano technique, conidial concentrations | Nano-formulated fungus | Sabbour 2015 [77,78] | Efficacy against target organisms | ||
2015 | Solar radiation, time, oils and sunscreens. | Oil suspension | Fernandes et al. 2015 [101] | UV-tolerance and the country of origin | ||
Laboratory studies and caged field trials testing the effect of M. flavoviride | ||||||
Conditions | Targeted Order: Family | Method | Reference | Note | ||
1983 | Temperature, conidial concentrations | Coleoptera: Curculionidae | Spraying with a spray tower apparatus | Soares et al., 1983 [102] | ||
1987 | None | Homoptera: Delphacidae | Conidial suspension by spinning disc applicator | Aguda et al., 1987 [79] | Caged field trial. M. flavoviride var. minus | |
1992 | Conidial concentration | Orthoptera: Acrididae | Fungal inoculum applied to the body of targets | Moore et al., 1992 [80] | ||
1993 | Formulation type, conidial concentration, relative humidity | Orthoptera: Acrididae | Topical administration | Bateman et al., 1993; Lomer et al., 1997 [51,74] | ||
1993 | Various isolates | Coleoptera: Curculionidae | Immersion to conidial suspension | Moorhouse et al., 1993 [81] | M. flavoviride var. minus | |
1993 | Conidial concentrations | Orthoptera: Acrididae and Phalacridae | Inoculated at the mouthpart of the body | Milner and Prior 1994 [82] | ||
1994 | None | Orthoptera: Acrididae | Conidial suspension applied topically | Seyoum et al., 1994 [83] | Flight and feeding behaviour | |
1994 | Temperature | Orthoptera: Acrididae | Spraying with blastophore suspension | Welling et al., 1994 [34] | ||
1995 | Age and sex of targets, fungal concentration and site of inoculation, various formulation oils | Orthoptera: Acrididae | Inoculation with conidial suspension | Prior et al., 1995 [84] | ||
1995 | Formulation oils, presence of an antioxidant, humidity of product, storage conditions | Orthoptera: Acrididae | Topical administration | Moore et al., 1995 [86] | ||
1996 | Conidial concentrations, components of bait | Orthoptera: Acrididae | Feeding bait inoculated with fungus | Caudwell and Gatehouse 1996 [85] | ||
1996 | Freshness of bait | Orthoptera: Acrididae | Baited feeding | Caudwell and Gatehouse 1996 [85] | Caged field study | |
1996 | Conidial concentrations | Orthoptera: Acrididae | Topical administration | Milner et al., 1996 [87] | ||
1997 | Droplet size, per hectare volume, type of enclosure | Orthoptera: Acrididae | Aerial spray | Price et al., 1997 [103] | Caged field and enclosed field study | |
1997 | Fungal isolates, temperature | Orthoptera: Acrididae | Inoculated at body parts | Milner 1997 [36] | ||
1997 | Basking, temperature, combination with another fungus. | Orthoptera: Acrididae | Inoculated feed | Inglis et al., 1997 [104] | ||
1997 | Method of fungal administration, temperature and humidity | Orthoptera: Acrididae | Topical inoculation or spray | Ouedraogo et al., 1997 [88] | ||
1997 | Conidial concentration, method of fungal administration | Coleoptera: Coccinellidae and Tenebrionidae, Neuroptera: Myrmeleontidae, Araneae: Philodromidae, Orthoptera: Acrididae | Exposure to leaves treated with fungal suspension, fungus-treated feed, topical administration | Peveling and Demba 1997 [89] | Study aimed at non-target arthropods. | |
1997 | Temperature and conidial concentration | Orthoptera: Pyrgomorphidae | Topical administration | Thomas and Jenkins 1997 [105] | ||
1997 | Spore concentrations | Orthoptera: Pyrgomorphidae | Topical administration | Thomas et al., 1997 [106] | Caged field study | |
1997 | Temperature, Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Cordycipitaceae) | Orthoptera: Acrididae | Feeding inoculated leaves | Inglis et al., 1997 [104] | ||
1997 | Moisture content of dehydrated conidia, rehydration time | Orthoptera: Acrididae | spray with a medium-droplet applicator | Moore et al., 1997 [107] | Caged field study | |
1998 | Temperature and relative humidity, various life stages of pest | Orthoptera: Acrididae | Ultra-low volume-spray | Sieglaff et al., 1998 [108] | Caged greenhouse, a follow-up study | |
1998 | Conidial concentrations, age of fungal cultures | Orthoptera: Acrididae | Spray or topical administration | Sieglaff et al., 1998 [108] | This was the initial study | |
1998 | Time after treatment, sunscreens | Orthoptera: Acrididae | Spray | Shah et al., 1998 [100] | Caged field study | |
1999 | Conidial concentrations, addition of B. bassiana, temperature regimes | Orthoptera: Acrididae | Inoculated feed | Inglis et al., 1999 [109] | ||
2001 | Components of medium | Orthoptera: Acrididae | Leaves treated with fungus | Fargues et al. 2002 [70] | ||
2008 | Isolates, conidial concentrations | Homoptera: Delphacidae | Spore suspension spray | Jin et al. 2008 [110] | With M. flavoviride var. minus | |
2011 | None | Hemiptera: Reduviidae | Conidial spray | Rocha and Luz 2011 [111] | The first report of M. flavoviride var. pemphigi against Triatoma infestans | |
2011 | Conidial concentrations | Lepidoptera: Noctuidae | Surface contamination | Belen et al. 2011 [57] | ||
2012 | Isolates, life stage of pests | Homoptera: Delphacidae | Fungal suspension spray | Li et al. 2012 [112] | ||
2014 | Presence of a major accumulation pheromone | Orthoptera: Acrididae | Topical application | Gorashi 2014 [113] | Feeding and movements were recorded | |
2015 | Conidial concentrations | Lepidoptera: Noctuidae, Pyralidae and Crambidae | na. | Sabbour 2015 [78] | Nano-formulated fungus | |
2015 | None | Hemiptera: Aphididae | Hand spray or tower spray | Lee et al. 2015 [114] | ||
2015 | Other fungal entomopathogens, method of infection, conidial concentration | Coleoptera: Tenebrionidae | Seed treatment, inoculation, fungus-treated feed | Rangel et al. 2015 [90] | Fungal combinations tested against Fusarium culmorum | |
2015 | Conidial concentrations | Lepidoptera: Noctuidae, Pyralidae and Crambidae | Fungus-treated leaves | Sabbour 2015 [77] | ||
2015 | Conidial concentrations | Lepidoptera: Gelechiidae | Leaves treated with fungus | Sabbour 2015 [77] | Nano-formulated fungus | |
2015 | Different strains | Lepidoptera: Pyralidae, Coleoptera: Chrysomelidae, Tenebrionidae and Curculionidae | Topical administration | Kocaçevik et al. 2015 [62] | The fungal isolate used was initially found on larvae of Amphimallon solstitiale | |
2017 | Rice variety and temperature, a symbiotic bacterium | Homoptera: Delphacidae | Exposure to fungal suspension | Huanhuan et al. 2017 [115] | ||
2017 | Combinations of temperature and relative humidity | Coleoptera: Chrysomelidae | Conidial suspension | Kryukov et al. 2017 [116] | M. pemphigi | |
2017 | Conidial concentrations, spray cover, life stages | Trombidiformes: Tetranychidae | Spraying spore suspension | Dogan et al. 2017 [117] | Petri dish and pot experiments | |
2018 | None | Hemiptera: Alydidae, Lepidoptera: Plutellidae and Coleoptera: Tenebrionidae | Fungal cultures | Kim et al. 2018 [8] | Fungal isolates from a fungal library | |
Effect of M. flavoviride under greenhouse and open field conditions | ||||||
Location | Target | Crop | Method | Source | Note | |
1993 | Field | Orthoptera: Pyrgomorphidae | none or mixed vegetables | Spray | Lomer et al., 1993, 1997 [50,51] | The first outdoor trials with M. flavoviride |
1995 | Field | Orthoptera: Pyrgomorphidae | cassava, shrub, chili and other vegetables | Spinning disc sprayer | Douro-Kpindou et al., 1995; Lomer et al., 1997 [51,118] | |
1997 | Field | Orthoptera: Acrididae and Gryllidae | none | Spray bands, aerial and mounted spray | Lomer et al., 1997; Milner 1997 [36,51] | |
1997 | Field | Orthoptera: Acrididae | none | Hand-held sprayer | Langewald et al., 1997; Lomer et al., 1997 [51,91] | |
1997 | Field | Orthoptera | various | Various | Lomer et al., 1997 [51] | A review including caged field studies and formulation studies |
2015 | Field | Lepidoptera: Crambidae | corn | Spray | Sabbour 2015 [77] | |
2015 | Field | Lepidoptera: Noctuidae, Pyralidae and Crambidae | corn | Spray | Sabbour 2015 [78] | Nano-formulated fungus |
2015 | Field and greenhouse | Lepidoptera: Gelechiidae | potato | Spray | Sabbour 2015 [77] | Nano-formulated fungus |
Studies on the compatibility of management types and agricultural substances on M. flavoviride | ||||||
Variable | Type of variable | Source | Note | |||
1997 | Chemical treatments to soil before isolation of fungus, temperature | Herbicide, fungicide and insecticide | Mietkiewski et al., 1997 [53] | Laboratory test | ||
2011 | Concentration of chemical | Fungicide | Damin et al. 2011 [92] | Laboratory test | ||
2011 | Fertilizer in double and single amount, organic manure | N, P, K, and organic manure | Jarmul-Pietraszczyk et al. 2011 [94] | Field study | ||
2011 | Conventional and organic fertilization, presence of plants | N, P, K; pig slurry, green manure | Meyling et al. 2011 [95] | Field study | ||
2016 | Management type | Organic, conventional | Sammaritano et al. 2016; de Castro 2016 [93,119] | Collection of fungal entomopathogens directly from the soil [93] or from soil samples for identification and further use | ||
Studies on the effect of M. flavoviride on non-target species | ||||||
Non-target organism | Conditions of application | Source | Note | |||
1994 | Hymenoptera: Apidae | Oil and water-based formulations, conidial dosage, spray | Ball et al. [75], | Caged study | ||
1997 | Coleoptera: Coccinellidae and Tenebrionidae, Neuroptera: Myrmeleontidae, Araneae: Philodromidae | Exposure to leaves treated with fungal suspension, fungus-treated feed, topical administration | Peveling et al. [89] | Conidial concentration, method of fungal administration were also studied | ||
1999 | Galliformes: Phasianidae | ingestion of spore-coated feed, ingestion of infected insects | Smits et al. [120] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóthné Bogdányi, F.; Petrikovszki, R.; Balog, A.; Putnoky-Csicsó, B.; Gódor, A.; Bálint, J.; Tóth, F. Current Knowledge of the Entomopathogenic Fungal Species Metarhizium flavoviride Sensu Lato and Its Potential in Sustainable Pest Control. Insects 2019, 10, 385. https://doi.org/10.3390/insects10110385
Tóthné Bogdányi F, Petrikovszki R, Balog A, Putnoky-Csicsó B, Gódor A, Bálint J, Tóth F. Current Knowledge of the Entomopathogenic Fungal Species Metarhizium flavoviride Sensu Lato and Its Potential in Sustainable Pest Control. Insects. 2019; 10(11):385. https://doi.org/10.3390/insects10110385
Chicago/Turabian StyleTóthné Bogdányi, Franciska, Renáta Petrikovszki, Adalbert Balog, Barna Putnoky-Csicsó, Anita Gódor, János Bálint, and Ferenc Tóth. 2019. "Current Knowledge of the Entomopathogenic Fungal Species Metarhizium flavoviride Sensu Lato and Its Potential in Sustainable Pest Control" Insects 10, no. 11: 385. https://doi.org/10.3390/insects10110385
APA StyleTóthné Bogdányi, F., Petrikovszki, R., Balog, A., Putnoky-Csicsó, B., Gódor, A., Bálint, J., & Tóth, F. (2019). Current Knowledge of the Entomopathogenic Fungal Species Metarhizium flavoviride Sensu Lato and Its Potential in Sustainable Pest Control. Insects, 10(11), 385. https://doi.org/10.3390/insects10110385