Electrophysiological Responses of Eighteen Species of Insects to Fire Ant Alarm Pheromone
Abstract
:1. Introduction
2. Methods and Materials
2.1. Insects
2.2. Chemicals
2.3. Electrophysiological Recordings
2.4. GC-EAD Analysis on Commercial 2-ethyl-3,6(5)-dimethylpyrazine
2.5. Data Analysis
3. Results
3.1. Gas Chromatography-Electroantennographic Detection (GC-EAD) Analysis of S. invicta to 2-ethyl-3,5(6)-dimethyl pyrazine (EDP)
3.2. Concentration Dependent EAG Responses to EDP in S. invicta Workers, Male, and Female Alates
3.3. EAG Response of Other Ants to Red Imported Fire Ant, Honeybee and Aphid Alarm Pheromones
3.4. EAG Response of Other Insects to Red Imported Fire Ant, Honeybee and Aphid Alarm Pheromones.
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database; Invasive Species Specialist Group: Auckland, New Zealand, 2000. [Google Scholar]
- Ascunce, M.S.; Yang, C.C.; Oakey, J.; Calcaterra, L.; Wu, W.J.; Shih, C.J.; Goudet, J.; Ross, K.G.; Shoemaker, D. Global invasion history of the fire ant Solenopsis invicta. Science 2011, 331, 1066–1068. [Google Scholar] [CrossRef] [PubMed]
- Lard, C.; Schmidt, J.; Morris, B.; Estes, L.; Ryan, C.; Bergquist, D. An Economic Impact of Imported Fire Ants in the United States of America; Texas A&M University: College Station, TX, USA, 2006. Available online: https://ant-pests.extension.org/other-impacts-of-fire-ants/ (accessed on 8 November 2019).
- Rocca, J.R.; Tumlinson, J.H.; Glancey, B.M.; Lofgren, C.S. The queen recognition pheromone of solenopsis invicta, preparation of (E-6-(1-pentenyl)-2H-pyran-2-one. Tetrahedron Lett. 1983, 24, 1889–1892. [Google Scholar] [CrossRef]
- Vander Meer, R.K.; Alvarez, F.; Lofgren, C.S. Isolation of the trail recruitment pheromone of Solenopsis invicta. J. Chem. Ecol. 1988, 14, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Vander Meer, R.K.; Preston, C.A.; Choi, M.Y. Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta. J. Chem. Ecol. 2010, 36, 163–170. [Google Scholar] [CrossRef]
- Vander Meer, R.K.; Williams, F.D.; Lofgren, C.S. Hydrocarbon components of the trail pheromone of the red imported fire ant, Solenopsis invicta. Tetrahedron Lett. 1981, 22, 1651–1654. [Google Scholar] [CrossRef]
- Vander Meer, R.K.; Alonso, L.E. Pheromone directed behavior in ants. In Pheromone Communication in Social Insects Ants, Wasps, Bees, and Termites; Vander Meer, R.K., Breed, M., Winston, M., Espelie, K.E., Eds.; Westview: Boulder, CO, USA, 1998; pp. 159–192. [Google Scholar]
- Guan, D.; Lu, Y.Y.; Liao, X.L.; Wang, L.; Chen, L. Electroantennogram and behavioral responses of the imported fire ant, Solenopsis invicta Buren, to an alarm pheromone component and its analogues. J. Agric. Food Chem. 2014, 62, 11924–11932. [Google Scholar] [CrossRef]
- Boch, R.; Shearer, D.A.; Stone, B.C. Identification of isoamyl acetate as an active component in the sting pheromone of the honey bee. Nature 1962, 195, 1018–1020. [Google Scholar] [CrossRef]
- Shearer, D.; Boch, R. 2-Heptanone in the mandibular gland secretion of the honey-bee. Nature 1965, 206, 530. [Google Scholar] [CrossRef]
- Bayendi Loudit, S.M.; Boullis, A.; Verheggen, F.; Francis, F. Identification of the alarm pheromone of cowpea aphid, and comparison with two other aphididae species. J. Insect Sci. 2018, 18. [Google Scholar] [CrossRef]
- Edwards, L. Trans-farnesene, alarm pheromone of the green peach aphid, Myzus persicae (Sulzer). Nature 1973, 241, 126–127. [Google Scholar] [CrossRef]
- Montgomery, M.E.; Nault, L.R. Effects of age and wing polymorphism on the sensitivity of Myzus perstcae to alarm pheromone. Ann. Entomol. Soc. Am. 1978, 71, 788–790. [Google Scholar] [CrossRef]
- Montgomery, M.; Nault, L. Comparative response of aphids to the alarm pheromone,(E)-ß-farnesene. Entomol. Exp. Appl. 1977, 22, 236–242. [Google Scholar] [CrossRef]
- Arakaki, N. Alarm pheromone eliciting attack and escape responses in the sugar cane woolly aphid, Ceratovacuna lanigera (Homoptera, Pemphigidae). J. Ethol. 1989, 7, 83–90. [Google Scholar] [CrossRef]
- Roitberg, B.D.; Myers, J.H. Adaptation of alarm pheromone responses of the pea aphid Acyrthosiphon pisum (Harris). Can. J. Zool. 1978, 56, 103–108. [Google Scholar] [CrossRef]
- Pickett, J.A.; Wadhams, L.J.; Woodcock, C.M. The chemical ecology of aphids. Annu. Rev. Entomol. 1992, 37, 67–90. [Google Scholar] [CrossRef]
- Allan, S.A.; Slessor, K.N.; Winston, M.L.; King, G.G.S. The influence of age and task specialization on the production and perception of honey bee pheromones. J. Insect Physiol. 1987, 33, 917–922. [Google Scholar] [CrossRef]
- Collins, M.A.; Rothenbuhler, C.W. Laboratory test of the response to an alarm chemical, isopentyl acetate, by Apis tnelufera. Ann. Entomol. Soc. Am. 1978, 71, 906–909. [Google Scholar] [CrossRef]
- Billen, J.; Morgan, E.D. Pheromone communication in social insects:sources and secretions. In Pheromone Communication in Social Insects Ants, Wasps, Bees, and Termites; Vander Meer, R.K., Breed, M., Winston, M., Espelie, K.E., Eds.; Westview: Boulder, CO, USA, 1998; pp. 3–33. [Google Scholar]
- Wang, Z.; Wen, P.; Qu, Y.; Dong, S.; Li, J.; Tan, K.; Nieh, J.C. Bees eavesdrop upon informative and persistent signal compounds in alarm pheromones. Sci. Rep. 2016, 6, 25693. [Google Scholar] [CrossRef]
- Sharma, K.; Vander Meer, R.K.; Fadamiro, H.Y. Phorid fly, Pseudacteon tricuspis, response to alkylpyrazine analogs of a fire ant, Solenopsis invicta, alarm pheromone. J. Insect Physiol. 2011, 57, 939–944. [Google Scholar] [CrossRef]
- Hatano, E.; Kunert, G.; Bartram, S.; Boland, W.; Gershenzon, J.; Weisser, W.W. Do aphid colonies amplify their emission of alarm pheromone? J. Chem. Ecol. 2008, 34, 1149–1152. [Google Scholar] [CrossRef]
- Wright, M.G.; Spencer, C.; Cook, R.M.; Henley, M.D.; North, W.; Mafra-Neto, A. African bush elephants respond to a honeybee alarm pheromone blend. Curr. Biol. CB 2018, 28, R778–R780. [Google Scholar] [CrossRef]
- Carey, A.F.; Carlson, J.R. Insect olfaction from model systems to disease control. Proc. Natl. Acad. Sci. USA 2011, 108, 12987–12995. [Google Scholar] [CrossRef] [PubMed]
- Leal, W.S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 2013, 58, 373–391. [Google Scholar] [CrossRef] [PubMed]
- Benton, R.; Sachse, S.; Michnick, S.W.; Vosshall, L.B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 2006, 4, e20. [Google Scholar] [CrossRef]
- Larsson, M.C.; Domingos, A.I.; Jones, W.D.; Chiappe, M.E.; Amrein, H.; Vosshall, L.B. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 2004, 43, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Vosshall, L.B.; Hansson, B.S. A unified nomenclature system for the insect olfactory coreceptor. Chem. Sens. 2011, 36, 497–498. [Google Scholar] [CrossRef]
- Krieger, J.; Klink, O.; Mohl, C.; Raming, K.; Breer, H. A candidate olfactory receptor subtype highly conserved across different insect orders. J. Comp. Physiol. A 2003, 189, 519–526. [Google Scholar] [CrossRef]
- Hallem, E.A.; Carlson, J.R. The odor coding system of Drosophila. Trends Genet. TIG 2004, 20, 453–459. [Google Scholar] [CrossRef]
- Andersson, M.N.; Löfstedt, C.; Newcomb, R.D. Insect olfaction and the evolution of receptor tuning. Front. Ecol. Evol. 2015, 3, 53. [Google Scholar] [CrossRef]
- Olsson, S.B.; Hansson, B.S. Electroantennogram and single sensillum recording in insect antennae. Methods Mol. Biol. 2013, 1068, 157–177. [Google Scholar] [CrossRef]
- Valles, S.M.; Porter, S.D. Identification of polygyne and monogyne fire ant colonies (Solenopsis invicta) by multiplex PCR of Gp-9 alleles. Insect Soc. 2003, 50, 199–200. [Google Scholar] [CrossRef]
- Kaissling, K.E.; Thorson, J. Insect Olfactory Sensilla: Structural, Chemical and Electrical Aspects of the Functional Organisation; Elsevier/North-Holland Biomedical Press: Amsterdam, The Netherlands, 1980; pp. 261–282. [Google Scholar]
- Vogt, J.T.; Grantham, R.A.; Smith, W.A.; Arnold, D.C. Prey of the red imported fire ant (Hymenoptera: Formicidae) in Oklahoma peanuts. Environ. Entomol. 2001, 30, 123–128. [Google Scholar] [CrossRef]
- Rashid, T.; Chen, J.; Vogt, J.T.; McLeod, P.J. Arthropod prey of imported fire ants (Hymenoptera: Formicidae) in Mississippi sweetpotato fields. Insect Sci. 2013, 20, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.R.; Fadamiro, H.Y. Fire ant alarm pheromone and venom alkaloids act in concert to attract parasitic phorid flies, Pseudacteon spp. J. Insect Physiol. 2013, 59, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Balusu, R.R.; Zhang, W.Q.; Ajayi, O.S.; Lu, Y.Y.; Zeng, R.S.; Fadamiro, H.Y.; Chen, L. Intra- and inter-specific variation in alarm pheromone produced by Solenopsis fire ants. Bull. Entomol. Res. 2018, 108, 667–673. [Google Scholar] [CrossRef]
- Howard, D.F.; Blum, M.S.; Jones, T.H.; Tomalski, M.D. Behavioral responses to an alkylpyrazine from the mandibular gland of the ant Wasmannia auropunctata. Insectes Sociaux 1982, 29, 369–374. [Google Scholar] [CrossRef]
- Wheeler, J.; Avery, J.; Olubajo, O.; Shamin, M.; Storm, C.; Duffield, R. Alkylpyrazines from hymenoptera: Isolation, identification and synthesis of 5-methyl-3-n-propyl-2-(1-butenyl) pyrazine from Aphaenogaster ants (Formicidae). Tetrahedron 1982, 38, 1939–1948. [Google Scholar] [CrossRef]
- Brophy, J.; Nelson, D. 2, 5-Dimethyl-3-n-propylpyrazine from the head of the bull ant Myrmecia gulosa (Fabr.). Insect Biochem. 1985, 15, 363–365. [Google Scholar] [CrossRef]
- Brown, M.W.; Moore, B.P. Volatile secretory products of an Australian formicine ant of the genus Calomyrmex (Hymenoptera: Formicidae). Insect Biochem. 1979, 9, 451–460. [Google Scholar] [CrossRef]
- Brophy, J.J.; Cavill, G.W.K.; Mcdonald, J.A.; Nelson, D.; Plant, W.D. Volatile constituents of two species of Australian formicine ants of the genera Notoncus and Polyrhachis. Insect Biochem. 1982, 12, 215–219. [Google Scholar] [CrossRef]
- Cavill, G.; Houghton, E. Volatile constituents of the Argentine ant, Iridomyrmex humilis. J. Insect Physiol. 1974, 20, 2049–2059. [Google Scholar] [CrossRef]
- Cavill, G.W.K.; Robertson, P.L.; Brophy, J.J.; Duke, R.K.; Mcdonald, J.A.; Plant, W.D. Chemical ecology of the meat ant Iridomyrmex purpureus sens. strict. Insect Biochem. 1985, 14, 505–513. [Google Scholar] [CrossRef]
- Brophy, J.J. Pyrazines Obtained from Insects: Their Source, Identification, Synthesis and Function; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Morgan, E.D.; Do Nascimento, R.R.; Keegans, S.J.; Billen, J. Comparative study of mandibular gland secretions of workers of ponerine ants. J. Chem. Ecol. 1999, 25, 1395–1409. [Google Scholar] [CrossRef]
- Schultz, T.R. In search of ant ancestors. Proc. Natl. Acad. Sci. USA 2000, 97, 14028–14029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May-Concha, I.; Rojas, J.C.; Cruz-Lopez, L.; Ibarra-Cerdena, C.N.; Ramsey, J.M. Volatile compound diversity and conserved alarm behaviour in Triatoma dimidiata. Parasites Vectors 2015, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Osada, K.; Kurihara, K.; Izumi, H.; Kashiwayanagi, M. Pyrazine analogues are active components of wolf urine that induce avoidance and freezing behaviours in mice. PLoS ONE 2013, 8, e61753. [Google Scholar] [CrossRef] [Green Version]
- Osada, K.; Miyazono, S.; Kashiwayanagi, M. Pyrazine analogs are active components of wolf urine that induce avoidance and fear-related behaviors in deer. Front. Behav. Neurosci. 2014, 8, 276. [Google Scholar] [CrossRef] [Green Version]
- Osada, K.; Miyazono, S.; Kashiwayanagi, M. The scent of wolves: Pyrazine analogs induce avoidance and vigilance behaviors in prey. Front. Neurosci. 2015, 9, 363. [Google Scholar] [CrossRef] [Green Version]
- Mathew, D.; Martelli, C.; Kelley-Swift, E.; Brusalis, C.; Gershow, M.; Samuel, A.D.; Emonet, T.; Carlson, J.R. Functional diversity among sensory receptors in a Drosophila olfactory circuit. Proc. Natl. Acad. Sci. USA 2013, 110, E2134–E2143. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Pellegrino, M.; Nakagawa, T.; Nakagawa, T.; Vosshall, L.B.; Touhara, K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 2008, 452, 1002–1006. [Google Scholar] [CrossRef]
- Clyne, P.J.; Warr, C.G.; Freeman, M.R.; Lessing, D.; Kim, J.; Carlson, J.R. A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron 1999, 22, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Carey, A.F.; Carlson, J.R.; Zwiebel, L.J. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2010, 107, 4418–4423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Rokas, A.; Berger, S.L.; Liebig, J.; Ray, A.; Zwiebel, L.J. Chemoreceptor evolution in hymenoptera and its implications for the evolution of eusociality. Genome Biol. Evol. 2015, 7, 2407–2416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, B.; Grossi, G.; Falabella, P.; Liu, Y.; Yan, S.; Lu, J.; Xi, J.; Wang, G. Molecular basis of alarm pheromone detection in aphids. Curr. Biol. CB 2017, 27, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.D.; Pickett, J.; Ma, Y.Z.; Bruce, T.; Napier, J.; Jones, H.D.; Xia, L.Q. Metabolic engineering of plant-derived (E)-beta-farnesene synthase genes for a novel type of aphid-resistant genetically modified crop plants. J. Integr. Plant Biol. 2012, 54, 282–299. [Google Scholar] [CrossRef]
- Bruce, T.J.; Wadhams, L.J.; Woodcock, C.M. Insect host location: A volatile situation. Trends Plant Sci. 2005, 10, 269–274. [Google Scholar] [CrossRef]
Species | Common name | Order | Family | Source |
---|---|---|---|---|
Reticulitermes flavipes Kollar | Eastern subterranean termite | Blattodae | Rhinotermitidae | Collected from Washington County, MS and maintained at BCPRU |
Coccinella novemnotata Herbst | Nine-spotted lady beetle | Coleoptera | Coccinellidae | Reared at USDA-ARS, BCPRU, Stoneville, MS |
Neochetina eichhorniae Warner | Water hyacinth weevil | Coleoptera | Curculionidae | Collected from Washington County, MS |
Aethina tumida Murray | Small hive beetle | Coleoptera | Nitidulidae | Provided by Dr. Yucheng Zhu, USDA-ARS, SIMRU, Stoneville, MS |
Ades aegypti Linnaeus | Yellow fever mosquito | Diptera | Culicidae | Reared at USDA-ARS, BCPRU, Stoneville, MS |
Musca domestica Linnaeus | Housefly | Diptera | Muscidae | Reared at USDA-ARS, BCPRU, Stoneville, MS |
Aphis nerii Boyer de Foscolombe | Oleander aphid | Hemiptera | Aphididae | Collected from Washington County, MS |
Rhopalosiphum padi Linnaeus | Bird cherry oat aphid | Hemiptera | Aphididae | Collected from Washington County, MS |
Cimex lectularius Linnaeus | Bed bug | Hemiptera | Cimicidae | Provided by Dr. Changlu Wang, Rutgers University, NJ |
Bagrada hilaris Burmeister | Bagrada bug | Hemiptera | Pentatomidae | Reared at USDA-ARS, BCPRU, Stoneville, MS |
Nezara virdula Linnaeus | Southern green stink bug | Hemiptera | Pentatomidae | Reared at USDA-ARS, BCPRU, Stoneville, MS |
Apis mellifera Linnaeus | Honeybee | Hymenoptera | Apidae | Provided by Dr. Yucheng Zhu, USDA-ARS, Stoneville, MS |
Solenopsis invicta Buren | Red imported fire ant | Hymenoptera | Formicidae | Field collected from Washington County, MS and maintained at BCPRU |
Solenopsis richteri Forel | Black imported fire ant | Hymenoptera | Formicidae | Collected from Tunica County, MS and maintained at BCPRU |
S. invicta X S. richteri | Hybrid imported fire ant | Hymenoptera | Formicidae | Collected from Washington County, MS and maintained at BCPRU |
Aphaenogaster picea Wheeler | None | Hymenoptera | Formicidae | Collected from Washington County, MS and maintained at BCPRU |
Monomorium minimum Buckley | Little black ant | Hymenoptera | Formicidae | Collected from Washington County, MS and maintained at BCPRU |
Monomorium pharaonic Linnaeus | Pharaoh ant | Hymenoptera | Formicidae | Provided by Dr. Grzegorz A. Buczkowski, Purdue University, IN |
Nylanderia fulva Mayr | Tawny crazy ant | Hymenoptera | Formicidae | Collected from Jackson County, MS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Grodowitz, M.J.; Chen, J. Electrophysiological Responses of Eighteen Species of Insects to Fire Ant Alarm Pheromone. Insects 2019, 10, 403. https://doi.org/10.3390/insects10110403
Du Y, Grodowitz MJ, Chen J. Electrophysiological Responses of Eighteen Species of Insects to Fire Ant Alarm Pheromone. Insects. 2019; 10(11):403. https://doi.org/10.3390/insects10110403
Chicago/Turabian StyleDu, Yuzhe, Michael J. Grodowitz, and Jian Chen. 2019. "Electrophysiological Responses of Eighteen Species of Insects to Fire Ant Alarm Pheromone" Insects 10, no. 11: 403. https://doi.org/10.3390/insects10110403
APA StyleDu, Y., Grodowitz, M. J., & Chen, J. (2019). Electrophysiological Responses of Eighteen Species of Insects to Fire Ant Alarm Pheromone. Insects, 10(11), 403. https://doi.org/10.3390/insects10110403