Efficacy of Combinations of Methoprene and Deltamethrin as Long-Term Commodity Protectants
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Tests with Hard Red Winter Wheat
2.3. Tests With Brown Rice
2.4. Tests with Corn
2.5. Statistical Analysis
3. Results
3.1. Hard Red Winter Wheat
3.2. Brown Rice
3.3. Corn
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Mason, L.J.; McDonough, M. Biology, behavior, and ecology of stored grain and legume insects. In Stored Product Protection, Circular S156; Hagstrum, D.H., Phillips, T.W., Cuperus, G.W., Eds.; Kansas State University: Manhattan, KS, USA, 2012; pp. 233–242. Available online: http://www.bookstore.ksre.ksu.edu/pubs/S156.pdf (accessed on 4 February 2019).
- Hagstrum, D.W.; Flinn, P.W.; Reed, C.; Phillips, T.W. Ecology and IPM of Insects at Grain Elevators and Flat Storages. Biopestic. Int. 2010, 61, 1–20. [Google Scholar]
- Arthur, F.H.; Ondier, G.O.; Siebenmorgen, T.J. Milling quality of rough rice exposed to increasing Rhyzopertha dominica (F.) population levels. J. Stored Prod. Res. 2012, 48, 137–142. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Reed, C.; Kenkel, P. Management of stored wheat insect pests in the USA. Integ. Pest Manag. Rev. 1999, 4, 127–142. [Google Scholar] [CrossRef]
- Arthur, F.H.; Subramanyam, B. Chemical Control in Stored Products. In Stored Product Protection, Circular S156; Hagstrum, D.H., Phillips, T.W., Cuperus, G.W., Eds.; Kansas State University: Manhattan, KS, USA, 2012; pp. 95–100. Available online: http://www.bookstore.ksre.ksu.edu/pubs/S156.pdf (accessed on 4 February 2019).
- Arthur, F.H.; Casada, M.E. Directional flow of summer aeration to manage insect pests in stored wheat. Appl. Eng. Agric. 2012, 26, 115–122. [Google Scholar] [CrossRef]
- Arthur, F.H.; Throne, J.E.; Maier, D.E.; Montross, M.D. Initial cooling cycles for corn stored in the southern United States: Aeration strategies based on weather data. Am. Entomol. 1998, 44, 118–123. [Google Scholar] [CrossRef]
- Arthur, F.H.; Yang, Y.; Wilson, L.T.; Siebenmorgen, T.J. Feasibility of automatic aeration for insect pest management for rice stored in east Texas. Appl. Eng. Agric. 2008, 24, 345–350. [Google Scholar] [CrossRef]
- Arthur, F.H.; Yang, Y.; Wilson, L.T. Utilization of a web-based model for aeration management in stored rough rice. J. Econ. Entomol. 2011, 104, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Arthur, F.H.; Casada, M.E. Temperature stratification and insect pest populations in stored wheat with suction versus pressure aeration. Appl. Eng. Agric. 2016, 32, 849–860. [Google Scholar]
- Yang, Y.; Wilson, L.T.; Arthur, F.H.; Wang, J.; Jia, C. Regional analysis of bin aeration as an alternative to insecticidal control for post-harvest management of Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). Ecol. Model. 2017, 359, 165–181. [Google Scholar] [CrossRef]
- Lui, S.; Arthur, F.H.; Van Gundy, D.; Phillips, T.W. Combination of methoprene and controlled aeration to manage insects in stored wheat. Insects 2016, 7, 25. [Google Scholar] [CrossRef]
- Flinn, P.W.; Subramanyam, B.; Arthur, F.H. Comparison of aeration and spinosad for suppressing insects in stored wheat. J. Econ. Entomol. 2004, 97, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Arthur, F.H.; Hagstrum, D.W.; Flinn, P.W.; Reed, C.; Phillips, T.W. Insect populations in grain residues associated with commercial Kansas grain elevators. J. Stored Prod. Res. 2006, 42, 226–239. [Google Scholar] [CrossRef]
- McKay, T.J.; White, A.L.; Starkus, L.; Arthur, F.H.; Campbell, J.F. Seasonal patterns of stored-product insects at a rice mill. J. Econ. Entomol. 2017, 110, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Tilley, D.R.; Casada, M.E.; Langemeier, M.R.; Subramanyam, B.; Arthur, F.H. Temporal changes in stored-product insect populations associated with boot, pit, and load-out areas of grain elevators and feed mills. J. Stored Prod. Res. 2017, 73, 62–73. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Arthur, F.H. Efficacy of deltamethrin against stored-product beetles at short exposure intervals or on a partially-treated rice mass. J. Econ. Entomol. 2015, 108, 1416–1421. [Google Scholar] [CrossRef] [PubMed]
- Arthur, F.H.; Starkus, L.; Smith, C.M.; Phillips, T.W. Methodology for determining susceptibility of rough rice to Rhyzopertha dominica (L.) and Sitotroga cerealella (Olivier). J. Pest Sci. 2013, 86, 499–505. [Google Scholar] [CrossRef]
- Chanbang, Y.; Arthur, F.H.; Wilde, G.E.; Throne, J.E. Hull characteristics as related to susceptibility of different varieties of rough tice to Rhyzopertha dominica (F.), the lesser grain borer (Coleoptera: Bostrichidae). J. Stored Prod. Res. 2008, 44, 205–212. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Arthur, F.H.; Throne, J.E. Cracked hulls affect population development of Rhyzopertha dominica in rough rice. J. Insect Sci. 2012, 12, 38. [Google Scholar] [CrossRef]
- Arthur, F.H. Efficacy of methoprene for multi-year protection of stored wheat, brown rice, rough rice and corn. J. Stored Prod. Res. 2016, 68, 85–92. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Arthur, F.H. Effectiveness of insecticide-incorporated bags to control stored-product beetles. J. Stored Prod. Res. 2016, 70, 18–24. [Google Scholar] [CrossRef]
- Scheff, D.S.; Arthur, F.H.; Campbell, J.F. Fecundity of Tribolium castaneum and Tribolium confusum adults after exposure to deltamethrin packaging. J. Pest. Sci. 2018, 91, 717–725. [Google Scholar] [CrossRef]
- Paudual, S.; Opit, G.P.; Arthur, F.H.; Bingham, G.Z.; Gautam, S.G. Contact toxicity of deltamethrin against Tribolium castaneum (Coleoptera: Tenebrionidae), Sitophilus oryzae (Coleoptera: Curculionidae), and Rhyzopertha dominica (Coleoptera: Bostrichidae) adults. J. Econ. Entomol. 2016, 109, 1943–1950. [Google Scholar]
- Opit, G.P.; Phillips, T.W.; Aikins, M.J.; Hasan, M.M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 2012, 105, 1104–1107. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.G.; Opit, G.P.; Hosoda, E. Phosphine resistance in adult and immature life stages of Tribolium castaneum (Coleoptera: Tenebrionidae) and Plodia interpunctella (Lepidoptera: Pyralidae) Populations in California. J. Econ. Entomol. 2016, 109, 2025–2533. [Google Scholar] [CrossRef] [PubMed]
- Konemann, C.K.; Hubhachen, Z.; Opit, G.P.; Bajrachayra, N.S. Phosphine Resistance in Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) collected from grain storage facilities in Oklahoma, USA. J. Econ. Entomol. 2017, 110, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
1. UTC, untreated control |
2. Suspension Concentrate (SC) formulation of deltamethrin applied at 0.5 ppm |
3. SC applied at 0.5 ppm + 1.25 ppm methoprene (M) |
4. SC at 0.5 ppm + 2.5 ppm M |
5. EC formulation of deltamethrin applied at 0.5 ppm |
6. EC applied at 1.0 ppm |
7. EC applied at 0.5 ppm + 1.25 ppm M |
8. EC applied at 0.5 ppm + 2.5 ppm M |
9. EC applied at 1.0 ppm + 1.25 ppm M |
10. EC applied at 1.0 ppm + 2.5 ppm M |
Treatment | # | Mean ± SE | Contrast | F | p | |
---|---|---|---|---|---|---|
Progeny | Untreated | 1 | 154.4 ± 16.5 | |||
SC0.5 | 2 | 52.8 ± 15.1 | 1 vs. 2 | 30.9 | <0.001 | |
SC0.5 + M1.25 | 3 | 57.6 ± 12.2 | 1 vs. 5 | 11.4 | <0.001 | |
SC0.5 + M2.5 | 4 | 36.6 ± 12.2 | 2 vs. 5 | 4.4 | 0.036 | |
EC0.5 | 5 | 91.4 ± 16.9 | 5 vs. 6 | 12.7 | <0.001 | |
EC1.0 | 6 | 26.0 ± 8.2 | 3 vs. 7 | 0.7 | 0.419 | |
EC0.5 + M1.25 | 7 | 42.7 ± 13.8 | 4 vs. 8 | 0.7 | 0.396 | |
EC0.5 + M2.5 | 8 | 52.2 ± 13.5 | 7 vs. 9 | 4.5 | 0.034 | |
EC1.0 + M1.25 | 9 | 30.1 ± 12.4 | 6 vs. 10 | 1.5 | 0.228 | |
EC1.0 + M2.5 | 10 | 3.7 ± 2.8 | 1 vs. 10 | 65.8 | <0.001 | |
Total %WL | Untreated | 1 | 2.23 ± 0.40 | |||
SC0.5 | 2 | 1.12 ± 0.38 | 1 vs. 2 | 5.2 | 0.023 | |
SC0.5 + M1.25 | 3 | 1.08 ± 0.33 | 1 vs. 5 | 2.9 | 0.090 | |
SC0.5 + M2.5 | 4 | 0.80 ± 0.37 | 2 vs. 5 | 0.3 | 0.559 | |
EC0.5 | 5 | 1.40 ± 0.35 | 5 vs. 6 | 4.8 | 0.030 | |
EC1.0 | 6 | 0.37 ± 0.19 | 3 vs. 7 | 0.0 | 0.967 | |
EC0.5 + M1.25 | 7 | 1.06 ± 0.33 | 4 vs. 8 | 0.4 | 0.525 | |
EC0.5 + M2.5 | 8 | 1.09 ± 0.49 | 7 vs. 9 | 3.3 | 0.071 | |
EC1.0 + M1.25 | 9 | 0.58 ± 0.28 | 6 vs. 10 | 0.1 | 0.740 | |
EC1.0 + M2.5 | 10 | 0.20 ± 0.05 | 1 vs. 10 | 17.9 | <0.001 | |
Frass wt. | Untreated | 1 | 0.46 ± 0.07 | |||
SC0.5 | 2 | 0.16 ± 0.06 | 1 vs. 2 | 17.2 | <0.001 | |
SC0.5 + M1.25 | 3 | 0.18 ± 0.04 | 1 vs. 5 | 6.1 | 0.041 | |
SC0.5 + M2.5 | 4 | 0.10 ± 0.04 | 2 vs. 5 | 2.7 | 0.100 | |
EC0.5 | 5 | 0.28 ± 0.06 | 5 vs. 6 | 8.8 | 0.003 | |
EC1.0 | 6 | 0.07 ± 0.02 | 3 vs. 7 | 0.0 | 0.871 | |
EC0.5 + M1.25 | 7 | 0.17 ± 0.06 | 4 vs. 8 | 0.7 | 0.381 | |
EC0.5 + M2.5 | 8 | 0.17 ± 0.06 | 7 vs. 9 | 4.8 | 0.029 | |
EC1.0 + M1.25 | 9 | 0.10 ± 0.05 | 6 vs. 10 | 0.6 | 0.452 | |
EC1.0 + M2.5 | 10 | 0.09 ± 0.05 | 1 vs. 10 | 39.1 | <0.001 |
Treatment | # | Mean ± SE | Contrast | F | p | |
---|---|---|---|---|---|---|
Progeny | Untreated | 1 | 154.8 ± 23.9 | |||
SC0.5 | 2 | 53.3 ± 6.3 | 1 vs. 2 | 36.1 | <0.001 | |
SC0.5 + M1.25 | 3 | 58.5 ± 7.8 | 1 vs. 5 | 16.9 | <0.001 | |
SC0.5 + M2.5 | 4 | 77.9 ± 10.8 | 2 vs. 5 | 3.6 | 0.085 | |
EC0.5 | 5 | 85.4 ± 12.5 | 5 vs. 6 | 1.7 | 0.199 | |
EC1.0 | 6 | 63.7 ± 11.3 | 3 vs. 7 | 3.3 | 0.071 | |
EC0.5 + M1.25 | 7 | 89.2 ± 9.2 | 4 vs. 8 | 0.1 | 0.741 | |
EC0.5 + M2.5 | 8 | 83.5 ± 10.3 | 7 vs. 9 | 5.1 | 0.024 | |
EC1.0 + M1.25 | 9 | 73.4 ± 11.4 | 6 vs. 10 | 0.6 | 0.448 | |
EC1.0 + M2.5 | 10 | 50.8 ± 5.8 | 1 vs. 10 | 37.9 | <0.001 | |
Total WL | Untreated | 1 | 5.10 ± 1.06 | |||
SC0.5 | 2 | 2.94 ± 1.10 | 1 vs. 2 | 2.5 | 0.115 | |
SC0.5 + M1.25 | 3 | 3.06 ± 0.84 | 1 vs. 5 | 6.1 | 0.014 | |
SC0.5 + M2.5 | 4 | 3.01 ± 0.92 | 2 vs. 5 | 0.8 | 0.371 | |
EC0.5 | 5 | 1.70 ± 1.60 | 5 vs. 6 | 0.5 | 0.489 | |
EC1.0 | 6 | 2.67 ± 0.70 | 3 vs. 7 | 0.3 | 0.599 | |
EC0.5 + M1.25 | 7 | 2.32 ± 0.49 | 4 vs. 8 | 0.1 | 0.888 | |
EC0.5 + M2.5 | 8 | 2.82 ± 0.71 | 7 vs. 9 | 0.1 | 0.792 | |
EC1.0 + M1.25 | 9 | 3.58 ± 1.71 | 6 vs. 10 | 0.3 | 0.601 | |
EC1.0 + M2.5 | 10 | 1.96 ± 0.43 | 1 vs. 10 | 5.3 | 0.023 | |
Frass wt. | Untreated | 1 | 0.76 ± 0.18 | |||
SC0.5 | 2 | 0.34 ± 0.10 | 1 vs. 2 | 6.3 | 0.013 | |
SC0.5 + M1.25 | 3 | 0.31 ± 0.09 | 1 vs. 5 | 3.9 | 0.050 | |
SC0.5 + M2.5 | 4 | 0.44 ± 0.12 | 2 vs. 5 | 0.3 | 0.588 | |
EC0.5 | 5 | 0.43 ± 0.13 | 5 vs. 6 | 0.5 | 0.467 | |
EC1.0 | 6 | 0.30 ± 0.11 | 3 vs. 7 | 0.3 | 0.611 | |
EC0.5 + M1.25 | 7 | 0.40 ± 0.07 | 4 vs. 8 | 0.1 | 0.791 | |
EC0.5 + M2.5 | 8 | 0.49 ± 0.12 | 7 vs. 9 | 1.0 | 0.314 | |
EC1.0 + M1.25 | 9 | 0.49 ± 0.17 | 6 vs. 10 | 0.2 | 0.643 | |
EC1.0 + M2.5 | 10 | 0.22 ± 0.04 | 1 vs. 10 | 10.1 | 0.002 |
Treatment | # | Mean ± SE | Contrast | F | p | |
---|---|---|---|---|---|---|
Progeny | Untreated | 1 | 13.4 ± 2.4 | |||
Total WL | Untreated | 1 | 1.49 ± 0.16 | |||
SC0.5 | 2 | 0.34 ± 0.13 | 1 vs. 2 | 55.5 | <0.001 | |
SC0.5 + M1.25 | 3 | 0.35 ± 0.13 | 1 vs. 5 | 62.8 | <0.001 | |
SC0.5 + M2.5 | 4 | 0.66 ± 0.29 | 2 vs. 5 | 0.2 | 0.633 | |
EC0.5 | 5 | 0.26 ± 0.07 | 5 vs. 6 | 0.1 | 0.151 | |
EC1.0 | 6 | 0.21 ± 0.06 | 3 vs. 7 | 1.0 | 0.267 | |
EC0.5 + M1.25 | 7 | 0.19 ± 0.04 | 4 vs. 8 | 0.0 | 0.274 | |
EC0.5 + M2.5 | 8 | 0.37 ± 0.18 | 7 vs. 9 | 1.9 | 0.975 | |
EC1.0 + M1.25 | 9 | 0.26 ± 0.06 | 6 vs. 10 | 1.7 | 0.421 | |
EC1.0 + M2.5 | 10 | 0.41 ± 0.15 | 1 vs. 10 | 48.8 | <0.001 |
Treatment | # | Mean ± SE | Contrast | F | p | |
---|---|---|---|---|---|---|
Progeny | Untreated | 1 | 26.4 ± 5.9 | |||
SC0.5 | 2 | 10.8 ± 5.1 | 1 vs. 2 | 8.5 | 0.004 | |
SC0.5 + M1.25 | 3 | 7.3 ± 4.1 | 1 vs. 5 | 6.0 | 0.156 | |
SC0.5 + M2.5 | 4 | 10.8 ± 4.4 | 2 vs. 5 | 0.2 | 0.633 | |
EC0.5 | 5 | 13.4 ± 5.0 | 5 vs. 6 | 2.1 | 0.151 | |
EC1.0 | 6 | 5.7 ± 3.0 | 3 vs. 7 | 1.2 | 0.267 | |
EC0.5 + M1.25 | 7 | 1.4 ± 1.0 | 4 vs. 8 | 1.2 | 0.274 | |
EC0.5 + M2.5 | 8 | 5.0 ± 2.6 | 7 vs. 9 | 0.0 | 0.975 | |
EC1.0 + M1.25 | 9 | 2.0 ± 1.7 | 6 vs. 10 | 0.7 | 0.403 | |
EC1.0 + M2.5 | 10 | 1.0 ± 1.1 | 1 vs. 10 | 22.3 | <0.001 | |
Total WL | Untreated | 1 | 1.12 ± 0.16 | |||
SC0.5 | 2 | 0.84 ± 0.26 | 1 vs. 2 | 0.8 | 0.377 | |
SC0.5 + M1.25 | 3 | 0.72 ± 0.26 | 1 vs. 5 | 0.8 | 0.386 | |
SC0.5 + M2.5 | 4 | 0.99 ± 0.24 | 2 vs. 5 | 0.0 | 0.987 | |
EC0.5 | 5 | 0.85 ± 0.23 | 5 vs. 6 | 0.5 | 0.479 | |
EC1.0 | 6 | 0.63 ± 0.24 | 3 vs. 7 | 0.8 | 0.369 | |
EC0.5 + M1.25 | 7 | 0.43 ± 0.20 | 4 vs. 8 | 0.5 | 0.465 | |
EC0.5 + M2.5 | 8 | 0.76 ± 0.30 | 7 vs. 9 | 0.1 | 0.792 | |
EC1.0 + M1.25 | 9 | 0.39 ± 0.09 | 6 vs. 10 | 0.2 | 0.716 | |
EC1.0 + M2.5 | 10 | 0.52 ± 0.13 | 1 vs. 10 | 3.8 | 0.054 | |
Frass wt. | Untreated | 1 | 0.25 ± 0.11 | |||
SC0.5 | 2 | 0.14 ± 0.07 | 1 vs.2 | 2.7 | 0.104 | |
SC0.5 + M1.25 | 3 | 0.08 ± 0.04 | 1 vs. 5 | 2.3 | 0.132 | |
SC0.5 + M2.5 | 4 | 0.19 ± 0.07 | 2 vs. 5 | 0.0 | 0.904 | |
EC0.5 | 5 | 0.15 ± 0.04 | 5 vs. 6 | 0.7 | 0.994 | |
EC1.0 | 6 | 0.09 ± 0.04 | 3 vs. 7 | 0.0 | 0.316 | |
EC0.5 + M1.25 | 7 | 0.08 ± 0.05 | 4 vs. 8 | 1.0 | 0.922 | |
EC0.5 + M2.5 | 8 | 0.12 ± 0.04 | 7 vs. 9 | 0.0 | 0.805 | |
EC1.0 + M1.25 | 9 | 0.05 ± 0.02 | 6 vs. 10 | 0.6 | 0.363 | |
EC1.0 + M2.5 | 10 | 0.07 ± 0.04 | 1 vs. 10 | 6.7 | 0.012 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arthur, F.H. Efficacy of Combinations of Methoprene and Deltamethrin as Long-Term Commodity Protectants. Insects 2019, 10, 50. https://doi.org/10.3390/insects10020050
Arthur FH. Efficacy of Combinations of Methoprene and Deltamethrin as Long-Term Commodity Protectants. Insects. 2019; 10(2):50. https://doi.org/10.3390/insects10020050
Chicago/Turabian StyleArthur, Frank H. 2019. "Efficacy of Combinations of Methoprene and Deltamethrin as Long-Term Commodity Protectants" Insects 10, no. 2: 50. https://doi.org/10.3390/insects10020050
APA StyleArthur, F. H. (2019). Efficacy of Combinations of Methoprene and Deltamethrin as Long-Term Commodity Protectants. Insects, 10(2), 50. https://doi.org/10.3390/insects10020050